
1. Introduction
2. Installing

i. Linux
ii. Mac OS X
iii. Windows
iv. Compiling
v. Upgrading in general
vi. Upgrading to new version
vii. Set up Cluster

3. First Steps
i. Getting Familiar
ii. The ArangoDB Server
iii. The ArangoDB Shell

i. Shell Output
ii. Configuration
iii. Details

iv. Collections
4. ArangoDB Web Interface
5. Handling Databases

i. Working with Databases
ii. Notes about Databases

6. Handling Collections
i. Collection Methods
ii. Database Methods

7. Handling Documents
i. Address and ETag
ii. Collection Methods
iii. Database Methods

8. Handling Edges
9. Simple Queries

i. Geo Queries
ii. Fulltext Queries
iii. Pagination
iv. Sequential Access
v. Modification Queries

10. Transactions

Table of Contents

i. Transaction invocation
ii. Passing parameters
iii. Locking and isolation
iv. Durability
v. Limitations

11. Write-ahead log
12. AQL

i. How to invoke AQL
ii. Data modification queries
iii. Language Basics
iv. Functions
v. Query Results
vi. Operators
vii. High level Operations
viii. Graph Operations
ix. Advanced Features
x. Extending AQL

i. Conventions
ii. Registering Functions

xi. AQL Examples
i. Collection based queries
ii. Data-modification queries
iii. Projections and filters
iv. Joins
v. Grouping

13. General Graphs
i. Graph Management
ii. Graph Functions
iii. Fluent Query Interface

14. (Deprecated) Blueprint Graphs
i. Graph Constructor
ii. Vertex Methods
iii. Edge Methods

15. Traversals
i. Using Traversal Objects
ii. Example Data

16. Foxx
i. Handling Request
ii. Manifest
iii. FoxxController

iv. FoxxModel
v. FoxxRepository
vi. Deploying Applications
vii. Developing Applications
viii. Dependency Injection
ix. Foxx Exports
x. Optional Functionality

17. Foxx Manager
i. First Steps
ii. Behind the scenes
iii. Multiple Databases
iv. Manager Commands
v. Frequently Used Options

18. ArangoDB's Actions
i. Delivering HTML Pages
ii. Json Objects
iii. Modifying

19. Replication
i. Components
ii. Example Setup
iii. Replication Limitations
iv. Replication Overhead

20. Sharding
i. How to try it out
ii. Implementation
iii. Authentication
iv. Firewall setup

21. Configure ArangoDB
i. Arangod options
ii. Write-ahead log options
iii. Endpoints options
iv. Cluster options
v. Logging options
vi. Communication options
vii. Random numbers
viii. Authentication
ix. Emergency Console

22. Arangoimp
23. Arangodump
24. Arangorestore

25. HTTP API
i. Databases

i. To-Endpoint
ii. Management
iii. Notes on Databases

ii. Documents
i. Address and ETag
ii. Working with

iii. Edges
i. Address and ETag
ii. Working with Edges

iv. AQL Query Cursors
i. Query Results
ii. Accessing Cursors

v. AQL Queries
vi. AQL User Functions Management
vii. Simple Queries
viii. Collections

i. Creating
ii. Getting Information
iii. Modifying

ix. Indexes
i. Working with Indexes
ii. Cap Constraints
iii. Hash
iv. Skiplist
v. Geo
vi. Fulltext

x. Transactions
xi. General Graph

i. Management
ii. Vertices
iii. Edges

xii. (Deprecated) Graphs
i. Vertex
ii. Edges

xiii. Traversals
xiv. Replication

i. Replication Dump
ii. Replication Logger

iii. Replication Applier
iv. Other Replication Commands

xv. Bulk Imports
i. JSON Documents
ii. Headers and Values

xvi. Batch Requests
xvii. Monitoring
xviii. User Management
xix. Async Result
xx. Endpoints
xxi. Sharding
xxii. Miscellaneous functions
xxiii. General Handling

26. Javascript Modules
i. "console"
ii. "fs"
iii. (Deprecated) "graph"

i. Graph Constructors
ii. Vertex Methods
iii. Edge Methods

iv. "actions"
v. "planner"
vi. Write-ahead log
vii. Task Management
viii. Using jsUnity

27. Administrating ArangoDB
28. Handling Indexes

i. Cap Constraint
ii. Geo Indexes
iii. Fulltext Indexes
iv. Hash Indexes
v. Skip-Lists
vi. BitArray Indexes

29. Datafile Debugger
30. Naming Conventions

i. Database Names
ii. Collection Names
iii. Document Keys
iv. Attribute Names

31. Error codes and meanings

Welcome to the ArangoDB documentation!

The documentation introduces ArangoDB for you as an user, developer and administrator
and describes all of his functions in detail.

ArangoDB is a multi-purpose open-source database with a flexible data model for
documents, graphs and key-values. You can easily build high performance applications
using a convenient SQL-like query language or JavaScript extensions.

The database server arangod stores all documents and serves them using a REST
interface. There are drivers for all major languages like Ruby, Python, PHP, JavaScript,
and Perl. In the following sections we will use the JavaScript shell to communicate with
the database and demonstrate some of ArangoDB's features using JavaScript.

Some of the features and programs of ArangoDB are:

A powerful query language
Open Source
A database daemon
An ArangoDB shell
Flexible data modeling
And many more!

In this documentation you can inform yourself about all the functions, features and
programs ArangoDB provides for you.

If you want to test the shell go here.

If you want to play with our query language, go to our AQL Tutorial.

Community

If you have any questions don't hesitate to ask on:

github
google groups
stackoverflow

ArangoDB Documentation

https://www.arangodb.org/drivers
https://www.arangodb.org/shtutorial
https://www.arangodb.org/shtutorial
https://github.com/triAGENS/ArangoDB/issues
https://groups.google.com/forum/?hl=de#!forum/arangodb
http://stackoverflow.com/questions/tagged/arangodb

We will respond as soon as possible.

This chapter describes how to install ArangoDB under various operation systems.

First of all download and install the corresponding RPM or Debian package or use
homebrew on the MacOS X. You can find packages for various operation systems at our
download section.

If you don't want to install ArangoDB at the beginning and just want to experiment with
the features, you can use our online demo.

In this Chapter you will also learn how to Compile ArangoDB from scratch.

You also get help if you want to update your ArangoDB Version to the newest one!

Installing

http://www.arangodb.org/download
https://www.arangodb.org/tryitout

You can find binary packages for various Linux distributions here.

We provide packages for:

Centos
Debian
Fedora
Linux-Mint
Mandriva
OpenSUSE
RedHat RHEL
SUSE SLE
Ubuntu

Follow the instructions on the downloads page to use your favorite package manager for
the major distributions. After setting up the ArangoDB repository you can easily install
ArangoDB using yum, aptitude, urpmi or zypper.

Gentoo

Please use the portage provided by @mgiken.

Debian sid

To use ArangoDB on Debian sid (the development version of Debian), a different version
of ICU is required. User baslr provided the following instructions for getting ArangoDB
2.0.7 to work on an x86_64:

link to Github issue

Other versions of ArangoDB or other architectures should work similarly.

Linux-Mint

Linux

Using a Package Manager to install
ArangoDB

http://www.arangodb.org/download/
http://www.arangodb.org/download
https://github.com/mgiken/portage-overlay/tree/master/dev-db/ArangoDB
https://github.com/triAGENS/ArangoDB/issues/865

Download and import GPG-PublicKey:

wget	-O	RPM-GPG-KEY-www.arangodb.org	http://www.arangodb.org/repositories/PublicKey

apt-key	add	RPM-GPG-KEY-www.arangodb.org

Add the corresponding repository in file 	/etc/apt/sources.list	:

deb	http://www.arangodb.org/repositories	LinuxMint-13	main

Update the repository data:

aptitude	update

Now you should be able to search for arangodb:

aptitude	search	arangodb

In order to install arangodb:

aptitude	install	arangodb

A Chef recipe is available from jbianquetti at:

https://github.com/jbianquetti/chef-arangodb

Using Vagrant and Chef

The preferred method for installing ArangoDB under Mac OS X is homebrew. However,
in case you are not using homebrew, we provide a command-line app which contains all
the executables.

There is also a version available in the AppStore, which comes with a nice graphical user
interface to start and stop the server.

If you are using homebrew, then you can install the ArangoDB using brew as follows:

brew	install	arangodb

This will install the current stable version of ArangoDB and all dependencies within your
Homebrew tree. Note that the server will be installed as:

/usr/local/sbin/arangod

The ArangoDB shell will be installed as:

/usr/local/bin/arangosh

If you want to install the latest (unstable) version use:

brew	install	--HEAD	arangodb

You can uninstall ArangoDB using:

brew	uninstall	arangodb

Mac OS X

Homebrew

http://brew.sh/

However, in case you started ArangoDB using the launchctl, you need to unload it before
uninstalling the server:

launchctl	unload	~/Library/LaunchAgents/homebrew.mxcl.arangodb.plist

Then remove the LaunchAgent:

rm	~/Library/LaunchAgents/homebrew.mxcl.arangodb.plist

ArangoDB is available in Apple's App-Store. Please note, that it sometimes takes days or
weeks until the latest versions are available.

In case you are not using homebrew, we also provide a command-line app. You can
download it from here.

Choose Mac OS X and go to Grab binary packages directly. This allows you to install the
application ArangoDB-CLI in your application folder.

Starting the application will start the server and open a terminal window showing you the
log-file.

ArangoDB	server	has	been	started

The	database	directory	is	located	at

			'/Applications/ArangoDB-CLI.app/Contents/MacOS/opt/arangodb/var/lib/arangodb'

The	log	file	is	located	at

			'/Applications/ArangoDB-CLI.app/Contents/MacOS/opt/arangodb/var/log/arangodb/arangod.log'

You	can	access	the	server	using	a	browser	at	'http://127.0.0.1:8529/'

or	start	the	ArangoDB	shell

			'/Applications/ArangoDB-CLI.app/Contents/MacOS/arangosh'

Switching	to	log-file	now,	killing	this	windows	will	NOT	stop	the	server.

2013-10-27T19:42:04Z	[23840]	INFO	ArangoDB	(version	1.4.devel	[darwin])	is	ready	for	business.	Have	fun!

Apple's App Store

Command-Line App

http://www.arangodb.org/download

Note that it is possible to install both, the homebrew version and the command-line app.
You should, however, edit the configuration files of one version and change the port
used.

The default installation directory is c:\Program Files\ArangoDB-1.x.y. During the
installation process you may change this. In the following description we will assume that
ArangoDB has been installed in the location .

You have to be careful when choosing an installation directory. You need either write
permission to this directory or you need to modify the config file for the server process. In
the latter case the database directory and the Foxx directory has to be writable by the
user.

Installing for a single user: Select a different directory during installation. For example
C:/Users//arangodb or C:/ArangoDB.

Installing for multiple users: Keep the default directory. After the installation edit the file
/etc/arangodb/arangod.conf. Adjust the directory and app-path so that these paths point
into your home directory.

			[database]

			directory	=	@HOMEDRIVE@/@HOMEPATH@/arangodb/databases

			[javascript]

			app-path	=	@HOMEDRIVE@/@HOMEPATH@/arangodb/apps

			Create	the	directories	for	each	user	that	wants	to	use	ArangoDB.

Installing as Service: Keep the default directory. After the installation open a command
line as administrator (search for cmd and right click run as administrator).

			cmd>	arangod	--install-service

			INFO:	adding	service	'ArangoDB	-	the	multi-purpose	database'	(internal	'ArangoDB')

			INFO:	added	service	with	command	line	'"C:\Program	Files	(x86)\ArangoDB	1.4.4\bin\arangod.exe"	--start-service'

			Open	the	service	manager	and	start	ArangoDB.	In	order	to	enable	logging

			edit	the	file	"<ROOTDIR>/etc/arangodb/arangod.conf"	and	uncomment	the	file

			option.

			[log]

			file	=	@ROOTDIR@/var/log/arangodb/arangod.log

Windows

Client, Server and Lock-Files

Please note that ArangoDB consists of a database server and client tools. If you start the
server, it will place a (read-only) lock file to prevent accidental access to the data. The
server will attempt to remove this lock file when it is started to see if the lock is still valid -
this is in case the installation did not proceed correctly or if the server terminated
unexpectedly.

Starting

To start an ArangoDB server instance with networking enabled, use the executable
arangod.exe located in /bin. This will use the configuration file arangod.conf located in
/etc/arangodb, which you can adjust to your needs and use the data directory
/var/lib/arangodb. This is the place where all your data (databases and collections) will be
stored by default.

Please check the output of the arangod.exe executable before going on. If the server
started successfully, you should see a line 	ArangoDB	is	ready	for	business.	Have	fun!	 at
the end of its output.

We now wish to check that the installation is working correctly and to do this we will be
using the administration web interface. Execute arangod.exe if you have not already
done so, then open up your web browser and point it to the page:

http://127.0.0.1:8529/

To check if your installation was successful, click the Collection tab and open the
configuration. Select the System type. If the installation was successful, then the page
should display a few system collections.

Try to add a new collection and then add some documents to this new collection. If you
have succeeded in creating a new collection and inserting one or more documents, then
your installation is working correctly.

Advanced Starting

If you want to provide our own start scripts, you can set the environment variable
ARANGODB_CONFIG_PATH. This variable should point to a directory containing the
configuration files.

Using the Client

To connect to an already running ArangoDB server instance, there is a shell
arangosh.exe located in /bin. This starts a shell which can be used – amongst other
things – to administer and query a local or remote ArangoDB server.

Note that arangosh.exe does NOT start a separate server, it only starts the shell. To use
it you must have a server running somewhere, e.g. by using the arangod.exe executable.

arangosh.exe uses configuration from the file arangosh.conf located in /etc/arangodb/.
Please adjust this to your needs if you want to use different connection settings etc.

32bit

If you have an EXISTING database, then please note that currently a 32 bit version of
ArangoDB is NOT compatible with a 64 bit version. This means that if you have a
database created with a 32 bit version of ArangoDB it may become corrupted if you
execute a 64 bit version of ArangoDB against the same database, and vice versa.

Upgrading

To upgrade an EXISTING database created with a previous version of ArangoDB, please
execute the server arangod.exe with the option --upgrade. Otherwise starting ArangoDB
may fail with errors.

Note that there is no harm in running the upgrade. So you should run this batch file if you
are unsure of the database version you are using.

You should always check the output for errors to see if the upgrade was completed
successfully.

Uninstalling

To uninstall the Arango server application you can use the windows control panel (as you
would normally uninstall an application). Note however, that any data files created by the
Arango server will remain as well as the directory. To complete the uninstallation
process, remove the data files and the directory manually.

Limitations for Cygwin

Please note some important limitations when running ArangoDB under Cygwin: Starting
ArangoDB can be started from out of a Cygwin terminal, but pressing CTRL-C will
forcefully kill the server process without giving it a chance to handle the kill signal. In this

case, a regular server shutdown is not possible, which may leave a file LOCK around in
the server's data directory. This file needs to be removed manually to make ArangoDB
start again. Additionally, as ArangoDB does not have a chance to handle the kill signal,
the server cannot forcefully flush any data to disk on shutdown, leading to potential data
loss. When starting ArangoDB from a Cygwin terminal it might also happen that no errors
are printed in the terminal output. Starting ArangoDB from an MS-DOS command prompt
does not impose these limitations and is thus the preferred method.

Please note that ArangoDB uses UTF-8 as its internal encoding and that the system
console must support a UTF-8 codepage (65001) and font. It may be necessary to
manually switch the console font to a font that supports UTF-8.

The following sections describe how to compile and build the ArangoDB from scratch.
The ArangoDB will compile on most Linux and Mac OS X systems. It assumes that you
use the GNU C/C++ compiler or clang/clang++ to compile the source. ArangoDB has
been tested with the GNU C/C++ compiler and clang/clang++, but should be able to
compile with any Posix-compliant compiler. Please let us know whether you successfully
compiled it with another C/C++ compiler.

There are the following possibilities:

all-in-one: this version contains the source code of the ArangoDB, all generated files
from the autotools, FLEX, and BISON as well as a version of V8, libev, and ICU.

devel: this version contains the development version of the ArangoDB. Use this
branch, if you want to make changes to ArangoDB source.

The devel version requires a complete development environment, while the all-in-one
version allows you to compile the ArangoDB without installing all the prerequisites. The
disadvantage is that it takes longer to compile and you cannot make changes to the flex
or bison files.

Amazon Micro Instance

@sohgoh has reported that it is very easy to install ArangoDB on an Amazon Micro
Instance:

amazon>	sudo	yum	install	readline-devel

amazon>	./configure

amazon>	make

amazon>	make	install

For detailed instructions the following section.

Note: there are separate instructions for the devel version in the next section.

Compiling ArangoDB from scratch

All-In-One Version

Basic System Requirements

Verify that your system contains:

the GNU C/C++ compilers "gcc" and "g++" and the standard C/C++ libraries. You will
compiler and library support for C++11. To be on the safe side with gcc/g++, you will
need version number 4.8.1 or higher. For "clang" and "clang++", you will need at
least version 3.4.
the GNU make

In addition you will need the following libraries:

the GNU readline library
the OpenSSL library
Go 1.2 (or higher)

Under Mac OS X you also need to install:

Xcode
scons

Download the Source

Download the latest source using GIT:

git	clone	git://github.com/triAGENS/ArangoDB.git

Note: if you only plan to compile ArangoDB locally and do not want to modify or push any
changes, you can speed up cloning substantially by using the --single-branch and --depth
parameters for the clone command as follws:

git	clone	--single-branch	--depth	1	git://github.com/triAGENS/ArangoDB.git

Configure

Switch into the ArangoDB directory

cd	ArangoDB

In order to configure the build environment execute

./configure	--enable-all-in-one-v8	--enable-all-in-one-libev	--enable-all-in-one-icu

to setup the makefiles. This will check the various system characteristics and installed
libraries.

Compile

Compile the program by executing

make

This will compile the ArangoDB and create a binary of the server in

./bin/arangod

Test

Create an empty directory

unix>	mkdir	/tmp/database-dir

Check the binary by starting it using the command line.

unix>	./bin/arangod	-c	etc/relative/arangod.conf	--server.endpoint	tcp://127.0.0.1:12345	--server.disable-authentication	true	/tmp/database-dir

This will start up the ArangoDB and listen for HTTP requests on port 12345 bound to IP
address 127.0.0.1. You should see the startup messages similar to the following:

2013-10-14T12:47:29Z	[29266]	INFO	ArangoDB	xxx	...	</br>

2013-10-14T12:47:29Z	[29266]	INFO	using	endpoint	'tcp://127.0.0.1.12345'	for	non-encrypted	requests	</br>

2013-10-14T12:47:30Z	[29266]	INFO	Authentication	is	turned	off	</br>

2013-10-14T12:47:30Z	[29266]	INFO	ArangoDB	(version	xxx)	is	ready	for	business.	Have	fun!	</br>

If it fails with a message about the database directory, please make sure the database
directory you specified exists and can be written into.

Use your favorite browser to access the URL

http://127.0.0.1:12345/_api/version

This should produce a JSON object like

{"server"	:	"arango",	"version"	:	"..."}

as result.

Install

Install everything by executing

make	install

You must be root to do this or at least have write permission to the corresponding
directories.

The server will by default be installed in

/usr/local/sbin/arangod

The configuration file will be installed in

/usr/local/etc/arangodb/arangod.conf

The database will be installed in

/usr/local/var/lib/arangodb

The ArangoShell will be installed in

/usr/local/bin/arangosh

When upgrading from a previous version of ArangoDB, please make sure you inspect
ArangoDB's log file after an upgrade. It may also be necessary to start ArangoDB with
the --upgrade parameter once to perform required upgrade or initialisation tasks.

Basic System Requirements

Verify that your system contains

the GNU C/C++ compilers "gcc" and "g++" and the standard C/C++ libraries. You will
compiler and library support for C++11. To be on the safe side with gcc/g++, you will
need version number 4.8.1 or higher. For "clang" and "clang++", you will need at
least
version 3.4.
the GNU autotools (autoconf, automake)
the GNU make
the GNU scanner generator FLEX, at least version 2.3.35
the GNU parser generator BISON, at least version 2.4
Python, version 2 or 3
Go, version 1.2 or higher

In addition you will need the following libraries

libev in version 3 or 4 (only when configured with 	--disable-all-in-one-libev)
Google's V8 engine (only when configured with 	--disable-all-in-one-v8)
the ICU library (only when not configured with 	--enable-all-in-one-icu)
the GNU readline library
the OpenSSL library
the Boost test framework library (boost_unit_test_framework)

To compile Google V8 yourself, you will also need Python 2 and SCons.

Some distributions, for example Centos 5, provide only very out-dated versions of

Devel Version

compilers, FLEX, BISON, and the V8 engine. In that case you need to compile newer
versions of the programs and/or libraries.

If necessary, install or download the prerequisites:

GNU C/C++ 4.8.1 or higher (see http://gcc.gnu.org)
Google's V8 engine (see http://code.google.com/p/v8)
SCons for compiling V8 (see http://www.scons.org)
libev (see http://software.schmorp.de/pkg/libev.html)
OpenSSL (http://openssl.org/)
Go (http://golang.org/)

Most linux systems already supply RPM or DEP for these packages. Please note that you
have to install the development packages.

Download the Source

Download the latest source using GIT:

git	clone	git://github.com/triAGENS/ArangoDB.git

Setup

Switch into the ArangoDB directory

cd	ArangoDB

The source tarball contains a pre-generated "configure" script. You can regenerate this
script by using the GNU auto tools. In order to do so, execute

make	setup

This will call aclocal, autoheader, automake, and autoconf in the correct order.

Configure

In order to configure the build environment please execute

http://gcc.gnu.org
http://code.google.com/p/v8
http://www.scons.org
http://software.schmorp.de/pkg/libev.html
http://openssl.org/
http://golang.org/

unix>	./configure	--enable-all-in-one-v8	--enable-all-in-one-libev	--enable-all-in-one-icu	

to setup the makefiles. This will check for the various system characteristics and installed
libraries.

Please note that it may be required to set the --host and --target variables when running
the configure command. For example, if you compile on MacOS, you should add the
following options to the configure command:

--host=x86_64-apple-darwin	--target=x86_64-apple-darwin

The host and target values for other architectures vary.

If you also plan to make changes to the source code of ArangoDB, add the following
option to the configure command: --enable-maintainer-mode. Using this option, you can
make changes to the lexer and parser files and some other source files that will generate
other files. Enabling this option will add extra dependencies to BISON, FLEX, and
PYTHON. These external tools then need to be available in the correct versions on your
system.

The following configuration options exist:

	--enable-relative	

This will make relative paths be used in the compiled binaries and scripts. It allows to run
ArangoDB from the compile directory directly, without the need for a make install
command and specifying much configuration parameters. When used, you can start
ArangoDB using this command:

bin/arangod	/tmp/database-dir

ArangoDB will then automatically use the configuration from file etc/relative/arangod.conf.

	--enable-all-in-one-libev	

This tells the build system to use the bundled version of libev instead of using the system
version.

	--disable-all-in-one-libev	

This tells the build system to use the installed system version of libev instead of compiling
the supplied version from the 3rdParty directory in the make run.

	--enable-all-in-one-v8	

This tells the build system to use the bundled version of V8 instead of using the system
version.

	--disable-all-in-one-v8	

This tells the build system to use the installed system version of V8 instead of compiling
the supplied version from the 3rdParty directory in the make run.

	--enable-all-in-one-icu	

This tells the build system to use the bundled version of ICU instead of using the system
version.

	--disable-all-in-one-icu	

This tells the build system to use the bundled version of Boost header files. This is the
default and recommended.

	--enable-all-in-one-etcd	

This tells the build system to use the bundled version of ETCD. This is the default and
recommended.

	--enable-internal-go	

This tells the build system to use Go binaries located in the 3rdParty directory. Note that
ArangoDB does not ship with Go binaries, and that the Go binaries must be copied into
this directory manually.

	--enable-maintainer-mode	

This tells the build system to use BISON and FLEX to regenerate the parser and scanner
files. If disabled, the supplied files will be used so you cannot make changes to the parser
and scanner files. You need at least BISON 2.4.1 and FLEX 2.5.35. This option also
allows you to make changes to the error messages file, which is converted to js and C
header files using Python. You will need Python 2 or 3 for this. Furthermore, this option
enables additional test cases to be executed in a make unittests run. You also need to
install the Boost test framework for this.

Additionally, turning on the maintainer mode will turn on a lot of assertions in the code.

	--enable-failure-tests	

This option activates additional code in the server that intentionally makes the server
crash or misbehave (e.g. by pretending the system ran out of memory). This option is
useful to test the recovery after a crash and also several edge cases.

Compiling Go

Users F21 and duralog told us that some systems don't provide an update-to-date
version of go. This seems to be the case for at least Ubuntu 12 and 13. To install go on
these system, you may follow the instructions provided here. For other systems, you may
follow the instructions here.

To make ArangoDB use a specific version of go, you may copy the go binaries into the
3rdParty/go-32 or 3rdParty/go-64 directories of ArangoDB (depending on your
architecture), and then tell ArangoDB to use this specific go version by using the --
enable-internal-go configure option.

User duralog provided some the following script to pull the latest release version of go
into the ArangoDB source directory and build it:

cd	ArangoDB

hg	clone	-u	release	https://code.google.com/p/go	3rdParty/go-64	&&	\

		cd	3rdParty/go-64/src	&&	\

		./all.bash

#	now	that	go	is	installed,	run	your	configure	with	--enable-internal-go

./configure\

		--enable-all-in-one-v8	\

		--enable-all-in-one-libev	\

		--enable-internal-go

http://blog.labix.org/2013/06/15/in-flight-deb-packages-of-go
http://golang.org/doc/install

Recommended upgrade procedure

To upgrade an existing ArangoDB database to a newer version of ArangoDB (e.g. 1.2 to
1.3, or 2.0 to 2.1), the following method is recommended:

Check the CHANGELOG for API or other changes in the new version of ArangoDB
and make sure your applications can deal with them
Stop the "old" arangod service or binary
Copy the entire "old" data directory to a safe place (that is, a backup)
Install the new version of ArangoDB and start the server with the --upgrade option
once. This might write to the logfile of ArangoDB, so you may want to check the logs
for any issues before going on.
Start the "new" arangod service or binary regularly and check the logs for any
issues. When you're confident everything went well, you may want to check the
database directory for any files with the ending .old. These files are created by
ArangoDB during upgrades and can be safely removed manually later.

If anything goes wrong during or shortly after the upgrade:

Stop the "new" arangod service or binary
Revert to the "old" arangod binary and restore the "old" data directory
Start the "old" version again

It is not supported to use datafiles created or modified by a newer version of ArangoDB
with an older ArangoDB version. For example, it is unsupported and is likely to cause
problems when using 1.4 datafiles with an ArangoDB 1.3 instance.

General Upgrade Information

Please read the following sections if you upgrade from a previous version to ArangoDB
2.2.

Please note first that a database directory used with ArangoDB 2.2 cannot be used with
earlier versions (e.g. ArangoDB 2.1) any more. Upgrading a database directory cannot be
reverted. Therefore please make sure to create a full backup of your existing ArangoDB
installation before performing an upgrade.

ArangoDB will perform a database version check at startup. When ArangoDB 2.2
encounters a database created with earlier versions of ArangoDB, it will refuse to start.
This is intentional.

The output will then look like this:

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	Database	directory	version	(2.1)	is	lower	than	server	version	(2.2).

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	--

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	It	seems	like	you	have	upgraded	the	ArangoDB	binary.

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	If	this	is	what	you	wanted	to	do,	please	restart	with	the

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':			--upgrade

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	option	to	upgrade	the	data	in	the	database	directory.

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	Normally	you	can	use	the	control	script	to	upgrade	your	database

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':			/etc/init.d/arangodb	stop

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':			/etc/init.d/arangodb	upgrade

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':			/etc/init.d/arangodb	start

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	--

2014-07-07T22:04:53Z	[18675]	FATAL	Database	version	check	failed	for	'_system'.	Please	start	the	server	with	the	--upgrade	option

To make ArangoDB 2.2 start with a database directory created with an earlier ArangoDB
version, you may need to invoke the upgrade procedure once. This can be done by
running ArangoDB from the command line and supplying the 	--upgrade	 option:

unix>	arangod	data	--upgrade

Upgrading to ArangoDB 2.2

Database Directory Version Check and
Upgrade

where 	data	 is ArangoDB's main data directory.

Note: here the same database should be specified that is also specified when arangod is
started regularly. Please do not run the 	--upgrade	 command on each individual
database subfolder (named 	database-<some	number>).

For example, if you regularly start your ArangoDB server with

unix>	arangod	mydatabasefolder

then running

unix>	arangod	mydatabasefolder	--upgrade

will perform the upgrade for the whole ArangoDB instance, including all of its databases.

Starting with 	--upgrade	 will run a database version check and perform any necessary
migrations. As usual, you should create a backup of your database directory before
performing the upgrade.

The output should look like this:

2014-07-07T22:11:30Z	[18867]	INFO	In	database	'_system':	starting	upgrade	from	version	2.1	to	2.2.0

2014-07-07T22:11:30Z	[18867]	INFO	In	database	'_system':	Found	19	defined	task(s),	2	task(s)	to	run

2014-07-07T22:11:30Z	[18867]	INFO	In	database	'_system':	upgrade	successfully	finished

2014-07-07T22:11:30Z	[18867]	INFO	database	upgrade	passed

Please check the output the 	--upgrade	 run. It may produce errors, which need to be
fixed before ArangoDB can be used properly. If no errors are present or they have been
resolved, you can start ArangoDB 2.2 regularly.

A cluster of ArangoDB instances has to be upgraded as well. This involves upgrading all
ArangoDB instances in the cluster, as well as running the version check on the whole
running cluster in the end.

Upgrading a cluster planned in the web
interface

We have tried to make this procedure as painless and convenient for you. We assume
that you planned, launched and administrated a cluster using the graphical front end in
your browser. The upgrade procedure is then as follows:

1. First shut down your cluster using the graphical front end as usual.

2. Then upgrade all dispatcher instances on all machines in your cluster using the
version check as described above and restart them.

3. Now open the cluster dash board in your browser by pointing it to the same
dispatcher that you used to plan and launch the cluster in the graphical front end. In
addition to the usual buttons "Relaunch", "Edit cluster plan" and "Delete cluster plan"
you will see another button marked "Upgrade and relaunch cluster".

4. Hit this button, your cluster will be upgraded and launched and all is done for you
behind the scenes. If all goes well, you will see the usual cluster dash board after a
few seconds. If there is an error, you have to inspect the log files of your cluster
ArangoDB instances. Please let us know if you run into problems.

There is an alternative way using the 	ArangoDB	 shell. Instead of steps 3. and 4. above
you can launch 	arangosh	, point it to the dispatcher that you have used to plan and
launch the cluster using the option 	--server.endpoint	, and execute

arangosh>	require("org/arangodb/cluster").Upgrade("root","");

This upgrades the cluster and launches it, exactly as with the button above in the
graphical front end. You have to replace 	"root"	 with a user name and 	""	 with a
password that is valid for authentication with the cluster.

Replication

The _replication system collection is not used anymore in ArangoDB 2.2 because all
write operations will be logged in the write-ahead log. There is no need to additionally log
operations in the _replication system collection. Usage of the _replication system
collection in user scripts is discouraged.

Replication logger

Changed behavior

The replication methods 	logger.start	, 	logger.stop	 and 	logger.properties	 are no-ops
in ArangoDB 2.2 as there is no separate replication logger anymore. Data changes are
logged into the write-ahead log in ArangoDB 2.2, and need not be separately written to
the _replication system collection by the replication logger.

The replication logger object is still there in ArangoDB 2.2 to ensure API backwards-
compatibility, however, starting, stopping or configuring the logger are no-ops in
ArangoDB 2.2.

This change also affects the following HTTP API methods:

	PUT	/_api/replication/logger-start	

	PUT	/_api/replication/logger-stop	

	GET	/_api/replication/logger-config	

	PUT	/_api/replication/logger-config	

The start and stop commands will do nothing, and retrieving the logger configuration will
return a dummy configuration. Setting the logger configuration does nothing and will
return the dummy configuration again.

Any user scripts that invoke the replication logger should be checked and adjusted before
performing the upgrade to 2.2.

Replication of transactions

Replication of transactions has changed in ArangoDB 2.2. Previously, transactions were
logged on the master in one big block and were shipped to a slave in one block, too.

Now transaction operations will be logged and replicated as separate entries, allowing
transactions to be bigger and also ensure replication progress.

This also means the replication format is not fully compatible between ArangoDB 2.2 and
previous versions. When upgrading a master-slave pair from ArangoDB 2.1 to 2.2, please
stop operations on the master first and make sure everything has been replicated to the
slave server. Then upgrade and restart both servers.

Replication applier

This change also affects the behavior of the stop method of the replication applier. If the
replication applier is now stopped manually using the stop method and later restarted
using the start method, any transactions that were unfinished at the point of stopping will
be aborted on a slave, even if they later commit on the master.

In ArangoDB 2.2, stopping the replication applier manually should be avoided unless the
goal is to stop replication permanently or to do a full resync with the master anyway. If the
replication applier still must be stopped, it should be made sure that the slave has fetched
and applied all pending operations from a master, and that no extra transactions are
started on the master before the 	stop	 command on the slave is executed.

Replication of transactions in ArangoDB 2.2 might also lock the involved collections on
the slave while a transaction is either committed or aborted on the master and the
change has been replicated to the slave. This change in behavior may be important for
slave servers that are used for read-scaling. In order to avoid long lasting collection locks
on the slave, transactions should be kept small.

Any user scripts that invoke the replication applier should be checked and adjusted
before performing the upgrade to 2.2.

Collection figures

The figures reported by the collection.figures method only reflect documents and data
contained in the journals and datafiles of collections. Documents or deletions contained
only in the write-ahead log will not influence collection figures until the write-ahead log
garbage collection kicks in and copies data over into the collections.

The figures of a collection might therefore underreport the total resource usage of a
collection.

Additionally, the attributes lastTick and uncollectedLogfileEntries have been added to the
figures. This also affects the HTTP API method PUT /_api/collection/figures.

Any user scripts that process collection figures should be checked and adjusted before
performing the upgrade to 2.2.

Storage of non-JSON attribute values

Previous versions of ArangoDB allowed storing JavaScript native objects of type 	Date	,
	Function	, 	RegExp	 or 	External	, e.g.

db.test.save({	foo:	/bar/	});

db.test.save({	foo:	new	Date()	});

Objects of these types were silently converted into an empty object ({	}) when being
saved, an no warning was issued. This led to a silent data loss.

ArangoDB 2.2 changes this, and disallows storing JavaScript native objects of the
mentioned types. When this is attempted, the operation will now fail with the following
error:

Error:	<data>	cannot	be	converted	into	JSON	shape:	could	not	shape	document

To store such data in a collection, explicitly convert them into strings like so:

		db.test.save({	foo:	String(/bar/)	});

		db.test.save({	foo:	String(new	Date())	});

Please review your server-side data storage operation code (if any) before performing the
upgrade to 2.2.

AQL keywords

The following keywords have been added to AQL in ArangoDB 2.2 to support data
modification queries:

INSERT
UPDATE
REPLACE
REMOVE
WITH

Unquoted usage of these keywords for attribute names in AQL queries will likely fail in
ArangoDB 2.2. If any such attribute name needs to be used in a query, it should be
enclosed in backticks to indicate the usage of a literal attribute name.

For example, the following query will fail in ArangoDB 2.2 with a parse error:

FOR	i	IN	foo	RETURN	i.remove

The attribute name remove needs to be quoted with backticks to indicate that the literal
remove is meant:

FOR	i	IN	foo	RETURN	i.`remove`

Before upgrading to 2.2, please check if any of your collections or queries use of the new
keywords.

MRuby integration for arangod

ArangoDB had an experimental MRuby integration in some of the publish builds. This
wasn't continuously developed, and so it has been removed in ArangoDB 2.2.

This change has led to the following startup options being superfluous:

	--ruby.gc-interval	

	--ruby.action-directory	

	--ruby.modules-path	

	--ruby.startup-directory	

Specifying these startup options will do nothing in ArangoDB 2.2, so using these options
should be avoided from now on as they might be removed in a future version of
ArangoDB.

Removed startup options

The following startup options have been removed in ArangoDB 2.2. Specifying them in
the server's configuration file will not produce an error to make migration easier. Still,
usage of these options should be avoided as they will not have any effect and might fully
be removed in a future version of ArangoDB:

	--database.remove-on-drop	

	--database.force-sync-properties	

	--random.no-seed	

	--ruby.gc-interval	

	--ruby.action-directory	

	--ruby.modules-path	

	--ruby.startup-directory	

	--server.disable-replication-logger	

Before upgrading to 2.2, please check your configuration files and adjust them so no
superfluous options are used.

Removed features

Setting up a cluster can be intimidating task. You have to deal with firewalls, ports,
different types of machines, and the like. ArangoDB is prepared to deal with all kinds of
different setups and requirements.

However, in the following section we concentrate on a standard setup and show you, how
to build a ArangoDB cluster within minutes. If you want to dive deeper into the nasty
details, you should read about Sharding.

While not really relevant for a production environment, a common setup for development
is to create a cluster on a single machine. This is the easiest of all setups and you should
be ready to play with a ArangoDB cluster in less than a minute. Even when developing it
is convenient to create a cluster on a single machine instead of having to deal with a lot
of servers.

Step 1: Enable the Cluster mode

In order to enable the cluster mode, edit the configuration file as root

vi	/etc/arangodb/arangod.conf

and change the lines

[cluster]

disable-dispatcher-kickstarter	=	yes

disable-dispatcher-frontend	=	yes

to

[cluster]

disable-dispatcher-kickstarter	=	no

disable-dispatcher-frontend	=	no

Set up your ArangoDB Cluster

Development Scenario

Save and restart

/etc/init.d/arangodb	restart

Step 2: Setup your Cluster

You can now configure your cluster. A cluster consists of a number of database server
and coordinators. A database servers holds you precious data, while a coordinator talks
to the outside worlds, takes requests from clients, distributes them to database server
and assembles the result.

For this example, we assume that are creating three database servers and two
coordinators.

Use your favorite web browser and go to

http://localhost:8529/

You will now see the cluster management frontend.

Select Single Machine scenario. The next page allows you to enter the number of

coordinators and database servers.

Press Launch Cluster to fire up the cluster. That's it. Your cluster is up and running.

Step 3: Test your Cluster

Click on one of the coordinators (e. g. "Claus") to access your cluster. In order to create a
sharded collection, use Tools / JS Shell and execute

JSH>	db._create("users",	{	numberOfShards:	3	});

JSH>	db.users.save({	_key:	"cmeier",	firstName:	"Claus",	lastName:	"Meier"	});

Congratulations! You have created your first sharded collection and stored a document in
it.

For installation instructions, please refer to the Installation Manual.

As you know from the introduction ArangoDB is a multi-purpose open-source Database.
Following you can see the Key features or look at the programs in the ArangoDB
package.

Key features include:

Schema-free schemata: Let you combine the space efficiency of MySQL with the
performance power of NoSQL
Application server: Use ArangoDB as an application server and fuse your application
and database together for maximal throughput
JavaScript for all: No language zoo, you can use one language from your browser to
your back-end
Flexible data modeling: Model your data as combination of key-value pairs,
documents or graphs - perfect for social relations
Free index choice: Use the correct index for your problem, may it be a skip list or a
fulltext search
Configurable durability: Let the application decide if it needs more durability or more
performance
No-nonsense storage: ArangoDB uses all of the power of modern storage hardware,
like SSD and large caches
Powerful query language (AQL) to retrieve and modify data
Transactions: Run queries on multiple documents or collections with optional
transactional consistency and isolation
Replication: Set up the database in a master-slave configuration
It is open source (Apache Licence 2.0)

For more in-depth information:

Read more on the Design Goals of ArangoDB
Watch the video: Martin Schönert, architect of ArangoDB, gives an introduction of
what the ArangoDB project is about
Or give it a try

First Steps in ArangoDB

ArangoDB programs

http://www.arangodb.org/2012/03/07/avocadodbs-design-objectives
http://vimeo.com/36411892
http://www.arangodb.org/try

The ArangoDB package comes with the following programs:

arangod: The ArangoDB database daemon. This server program is intended to run
as daemon process and to server the various clients connection to the server via
TCP / HTTP. See Details about the ArangoDB Server
arangosh: The ArangoDB shell. A client that implements a read-eval-print loop
(REPL) and provides functions to access and administrate the ArangoDB server.
See Details about the ArangoDB Shell.
arangoimp: A bulk importer for the ArangoDB server See Details about Arangoimp.
arangodump: A tool to create backups of an ArangoDB database. See Details about
Arangodump.
arangorestore: A tool to reload data from a backup into an ArangoDB database. See
Details about Arangorestore
foxx-manager: A shell script to administer Foxx applications. See Foxx Manager
arango-dfdb: A datafile debugger for ArangoDB. It is intended to be used primarily
during development of ArangoDB

First of all download and install the corresponding RPM or Debian package or use
homebrew on the MacOS X. See the installation manual for more details. In case you just
want to experiment with ArangoDB you can use the online demo without installing
ArangoDB locally.

For Linux

Visit the official ArangoDB download page and download the correct package for
your Linux distribution
Install the package using your favorite package manager
Start up the database server, normally this is done by executing /etc/init.d/arangod
start. The exact command depends on your Linux distribution

For MacOS X

Execute brew install arangodb
And start the server using /usr/local/sbin/arangod &

For Microsoft Windows

Visit the official ArangoDB download page and download the installer for Windows
Start up the database server

After these steps there should be a running instance of arangod - the ArangoDB
database server.

unix>	ps	auxw	|	fgrep	arangod

arangodb	14536	0.1	0.6	5307264	23464	s002	S	1:21pm	0:00.18	/usr/local/sbin/arangod

If there is no such process, check the log file /var/log/arangodb/arangod.log for errors. If
you see a log message like

2012-12-03T11:35:29Z	[12882]	ERROR	Database	directory	version	(1)	is	lower	than	server	version	(1.2).

2012-12-03T11:35:29Z	[12882]	ERROR	It	seems	like	you	have	upgraded	the	ArangoDB	binary.	If	this	is	what	you	wanted	to	do,	please	restart	with	the	--upgrade	option	to	upgrade	the	data	in	the	database	directory.

2012-12-03T11:35:29Z	[12882]	FATAL	Database	version	check	failed.	Please	start	the	server	with	the	--upgrade	option

Getting familiar with ArangoDB

http://www.arangodb.org/try
http://www.arangodb.org/download
http://www.arangodb.org/download

make sure to start the server once with the --upgrade option.

The ArangoDB database server has two modes of operation: As a server, where it will
answer to client requests and as an emergency console, in which you can access the
database directly. The latter - as the name suggests - should only be used in case of an
emergency, for example, a corrupted collection. Using the emergency console allows you
to issue all commands normally available in actions and transactions. When starting the
server in emergency console mode, the server cannot handle any client requests.

You should never start more than one server using the same database directory,
independent from the mode of operation. Normally ArangoDB will prevent you from doing
this by placing a lockfile in the database directory and not allowing a second ArangoDB
instance to use the same database directory if a lockfile is already present.

The following command starts the ArangoDB database in server mode. You will be able
to access the server using HTTP requests on port 8529. Look here for a list of frequently
used options – see here for a complete list.

unix>	/usr/local/sbin/arangod	/tmp/vocbase

20ZZ-XX-YYT12:37:08Z	[8145]	INFO	using	built-in	JavaScript	startup	files

20ZZ-XX-YYT12:37:08Z	[8145]	INFO	ArangoDB	(version	1.x.y)	is	ready	for	business

20ZZ-XX-YYT12:37:08Z	[8145]	INFO	Have	Fun!

After starting the server, point your favorite browser to:

http://localhost:8529/

to access the administration front-end.

To start the server at system boot time you should use one of the pre-rolled packages
that will install the necessary start / stop scripts for ArangoDB. You can use the start
script as follows:

unix>	/etc/init.d/arangod	start

Details about the ArangoDB Server

Linux

To stop the server you can use the following command:

unix>	/etc/init.d/arangod	stop

You may require root privileges to execute these commands.

If you compiled ArangoDB from source and did not use any installation package – or
using non-default locations and/or multiple ArangoDB instances on the same host – you
may want to start the server process manually. You can do so by invoking the arangod
binary from the command line as shown before. To stop the database server gracefully,
you can either press CTRL-C or by send the SIGINT signal to the server process. On
many systems this can be achieved with the following command:

unix>	kill	-2	`pidof	arangod`

The following command-line options are frequently used. For a full list of options see
here.

	database-directory	

Uses the "database-directory" as base directory. There is an alternative version available
for use in configuration files, see here.

	--help	

	-h	

Prints a list of the most common options available and then exists. In order to see all
options use 	--help-all	.

	--log	level	

Allows the user to choose the level of information which is logged by the server. The
"level" is specified as a string and can be one of the following values: fatal, error, warning,
info, debug or trace. For more information see here.

	--server.endpoint	endpoint	 Specifies an endpoint for HTTP requests by clients.

Frequently Used Options

Endpoints have the following pattern:

tcp://ipv4-address:port - TCP/IP endpoint, using IPv4
tcp://[ipv6-address]:port - TCP/IP endpoint, using IPv6
ssl://ipv4-address:port - TCP/IP endpoint, using IPv4, SSL encryption
ssl://[ipv6-address]:port - TCP/IP endpoint, using IPv6, SSL encryption
unix:///path/to/socket - Unix domain socket endpoint

If a TCP/IP endpoint is specified without a port number, then the default port (8529) will
be used. If multiple endpoints need to be used, the option can be repeated multiple times.

Examples

unix>	./arangod	--server.endpoint	tcp://127.0.0.1:8529

--server.endpoint	ssl://127.0.0.1:8530

--server.keyfile	server.pem	/tmp/vocbase

2012-07-26T07:07:47Z	[8161]	INFO	using	SSL	protocol	version	'TLSv1'

2012-07-26T07:07:48Z	[8161]	INFO	using	endpoint	'ssl://127.0.0.1:8530'	for	http	ssl	requests

2012-07-26T07:07:48Z	[8161]	INFO	using	endpoint	'tcp://127.0.0.1:8529'	for	http	tcp	requests

2012-07-26T07:07:49Z	[8161]	INFO	ArangoDB	(version	1.1.alpha)	is	ready	for	business

2012-07-26T07:07:49Z	[8161]	INFO	Have	Fun!

Note	that	if	you	are	using	SSL-encrypted	endpoints,	you	must	also	supply	the	path	to	a	server	certificate	using	the	--server.keyfile	option.

Endpoints can also be changed at runtime. Please refer to HTTP Interface for Endpoints
for more details.

	--server.disable-authentication	

Setting value to true will turn off authentication on the server side so all clients can
execute any action without authorization and privilege checks.

The default value is false.

	--server.keep-alive-timeout	

Allows to specify the timeout for HTTP keep-alive connections. The timeout value must
be specified in seconds. Idle keep-alive connections will be closed by the server
automatically when the timeout is reached. A keep-alive-timeout value 0 will disable the
keep alive feature entirely.

	--daemon	

Runs the server as a "daemon" (as a background process).

The ArangoDB shell (arangosh) is a command-line tool that can be used for
administration of ArangoDB, including running ad-hoc queries.

The arangosh binary is shipped with ArangoDB and can be invoked like so:

unix>	arangosh

By default arangosh will try to connect to an ArangoDB server running on server localhost
on port 8529. It will use the username root and an empty password by default.
Additionally it will connect to the default database (_system). All these defaults can be
changed using the following command-line options:

--server.database : name of the database to connect to
--server.endpoint : endpoint to connect to
--server.username : database username
--server.password : password to use when connecting
--server.disable-authentication : disable password prompt and authentication

For example, to connect to an ArangoDB server on IP 192.168.173.13 on port 8530 with
the user foo and using the database test, use:

unix>	arangosh		\

		--server.endpoint	tcp://192.168.173.13:8530		\

		--server.username	foo		\

		--server.database	test		\

		--server.disable-authentication	false

arangosh will then display a password prompt and try to connect to the server after the
password was entered.

To change the current database after the connection has been made, you can use the
	db._useDatabase()	 command in arangosh:

arangosh>	db._useDatabase("myapp");

ArangoDB Shell Introduction

To get a list of available commands, arangosh provides a help() function. Calling it will
display helpful information.

arangosh also provides auto-completion. Additional information on available commands
and methods is thus provided by typing the first few letters of a variable and then
pressing the tab key. It is recommend to try this with entering db. (without pressing
return) and then pressing tab.

By the way, arangosh provides the db object by default, and this object can be used for
switching to a different database and managing collections inside the current database.

For a list of available methods for the db object, type

arangosh>	db._help();	

By default, the ArangoDB shell uses a pretty printer when JSON documents are printed.
This ensures documents are printed in a human-readable way:

arangosh>	db.five.toArray();

[

		{	

				"_id"	:	"five/3665447",	

				"_rev"	:	"3665447",	

				"name"	:	"one"

		},	

		{	

				"_id"	:	"five/3730983",	

				"_rev"	:	"3730983",	

				"name"	:	"two"

		},	

		{	

				"_id"	:	"five/3862055",	

				"_rev"	:	"3862055",	

				"name"	:	"four"

		},	

		{	

				"_id"	:	"five/3993127",	

				"_rev"	:	"3993127",	

				"name"	:	"three"

		}

]

While the pretty-printer produces nice looking results, it will need a lot of screen space for
each document. Sometimes, a more dense output might be better. In this case, the pretty
printer can be turned off using the command stop_pretty_print().

To turn on pretty printing again, use the start_pretty_print() command.

ArangoDB Shell Output

arangosh will look for a user-defined startup script named .arangosh.rc in the user's
home directory on startup. If the file is present arangosh will execute the contents of this
file inside the global scope.

You can use this to define your own extra variables and functions that you need often.
For example, you could put the following into the .arangosh.rc file in your home directory:

//	var	keyword	omitted	intentionally,

//	otherwise	"timed"	would	not	survive	the	scope	of	this	script

timed	=	function	(cb)	{

				var	internal	=	require("internal");

		var	start	=	internal.time();

		cb();

		internal.print("execution	took:	",	internal.time()	-	start);

};

This will make a function named timed available in arangosh in the global scope.

You can now start arangosh and invoke the function like this:

timed(function	()	{	

		for	(var	i	=	0;	i	<	1000;	++i)	{

				db.test.save({	value:	i	});	

		}

});

Please keep in mind that, if present, the .arangosh.rc file needs to contain valid
JavaScript code. If you want any variables in the global scope to survive you need to omit
the var keyword for them. Otherwise the variables will only be visible inside the script
itself, but not outside.

ArangoDB Shell Configuration

After the server has been started, you can use the ArangoDB shell (arangosh) to
administrate the server. Without any arguments, the ArangoDB shell will try to contact the
server on port 8529 on the localhost. For more information see the ArangoDB Shell
documentation. You might need to set additional options (endpoint, username and
password) when connecting:

unix>	./arangosh	--server.endpoint	tcp://127.0.0.1:8529	--server.username	root

The shell will print its own version number and – if successfully connected to a server –
the version number of the ArangoDB server.

Use 	--help	 to get a list of command-line options:

unix>	./arangosh	--help

STANDARD	options:

		--audit-log	<string>										audit	log	file	to	save	commands	and	results	to

		--configuration	<string>						read	configuration	file

		--help																								help	message

		--max-upload-size	<uint64>				maximum	size	of	import	chunks	(in	bytes)	(default:	500000)

		--no-auto-complete												disable	auto	completion

		--no-colors																			deactivate	color	support

		--pager	<string>														output	pager	(default:	"less	-X	-R	-F	-L")

		--pretty-print																pretty	print	values

		--quiet																							no	banner

		--temp-path	<string>										path	for	temporary	files	(default:	"/tmp/arangodb")

		--use-pager																			use	pager

JAVASCRIPT	options:

		--javascript.check	<string>																syntax	check	code	Javascript	code	from	file

		--javascript.execute	<string>														execute	Javascript	code	from	file

		--javascript.execute-string	<string>							execute	Javascript	code	from	string

		--javascript.startup-directory	<string>				startup	paths	containing	the	JavaScript	files

		--javascript.unit-tests	<string>											do	not	start	as	shell,	run	unit	tests	instead

		--jslint	<string>																										do	not	start	as	shell,	run	jslint	instead

LOGGING	options:

		--log.level	<string>				log	level	(default:	"info")

CLIENT	options:

		--server.connect-timeout	<double>									connect	timeout	in	seconds	(default:	3)

Details about the ArangoDB Shell

Command-Line Options

		--server.disable-authentication	<bool>				disable	authentication	(default:	false)

		--server.endpoint	<string>																endpoint	to	connect	to,	use	'none'	to	start	without	a	server	(default:	"tcp://127.0.0.1:8529")

		--server.password	<string>																password	to	use	when	connecting	(leave	empty	for	prompt)

		--server.request-timeout	<double>									request	timeout	in	seconds	(default:	300)

		--server.username	<string>																username	to	use	when	connecting	(default:	"root")

ArangoDB is a database that serves documents to clients.

A document contains zero or more attributes, each one of these attributes has a
value. A value can either be an atomic type, i. e. integer, strings, boolean, a list or an
embedded document. Documents are normally represented as JSON objects
Documents are grouped into collections. A collection contains zero or more
documents
Queries are used to filter documents based on certain criteria. Queries can be as
simple as a "query by example" or as complex as "joins" using many collections or
graph structures
Cursors are used to iterate over the result of a query
Indexes are used to speed up of searches. There are various different types of
indexes like hash indexes, geo indexes and bitarray indexes

If you are familiar with RDBMS then it is safe to compare collections to tables and
documents to rows. However, bringing structure to the "rows" has many advantages - as
you will see later.

The easiest way to connect to the database is the JavaScript shell arangosh. You can
either start it from the command-line or as an embedded version in the browser. Using
the command-line tool has the advantage that you can use autocompletion.

unix>	arangosh	--server.password	""

																																							_					

		__	_	_	__	__	_	_	__			__	_		___		___|	|__		

	/	_`	|	'__/	_`	|	'_	\	/	_`	|/	_	\/	__|	'_	\	

|	(_|	|	|	|	(_|	|	|	|	|	(_|	|	(_)	__	\	|	|	|

	__,_|_|		__,_|_|	|_|__,	|___/|___/_|	|_|

																							|___/																	

Welcome	to	arangosh	1.x.y.	Copyright	(c)	2012	triAGENS	GmbH.

Using	Google	V8	3.9.4	JavaScript	engine.

Using	READLINE	6.1.

Connected	to	Arango	DB	127.0.0.1:8529	Version	2.2.0

-------------------------------------	Help	-------------------------------------

Predefined	objects:																																																	

Exploring Collections and Documents

Starting the JavaScript shell

		arango:																															ArangoConnection											

		db:																																			ArangoDatabase													

		fm:																																			FoxxManager		

Example:																																																												

	>	db._collections();																			list	all	collections							

	>	db._create(<name>)																			create	a	new	collection				

	>	db._drop(<name>)																					drop	a	collection									

	>	db.<name>.toArray()																		list	all	documents									

	>	id	=	db.<name>.save({	...	})									save	a	document												

	>	db.<name>.remove(<_id>)														delete	a	document										

	>	db.<name>.document(<_id>)												retrieve	a	document								

	>	db.<name>.replace(<_id>,	{...})						overwrite	a	document							

	>	db.<name>.update(<_id>,	{...})							partially	update	a	document

	>	db.<name>.exists(<_id>)														check	if	document	exists			

	>	db._query(<query>).toArray()									execute	an	AQL	query							

	>	db._useDatabase(<name>)														switch	database												

	>	db._createDatabase(<name>)											create	a	new	database						

	>	db._listDatabases()																		list	existing	databases				

	>	help																																	show	help	pages												

	>	exit																																									

arangosh>

This gives you a prompt where you can issue JavaScript commands.

The standard setup does not require a password. Depending on your setup you might
need to specify the endpoint, username and password in order to run the shell on your
system. You can use the options 	--server.endpoint	, 	--server.username	 and 	--
server.password	 for this.

unix>	arangosh	--server.endpoint	tcp://127.0.0.1:8529	--server.username	root

A default configuration is normally installed under /etc/arangodb/arangosh.conf. It
contains a default endpoint and an empty password.

Troubleshooting

If the ArangoDB server does not start or if you cannot connect to it using arangosh or
other clients, you can try to find the problem cause by executing the following steps. If the
server starts up without problems you can skip this section.

Check the server log file: If the server has written a log file you should check it
because it might contain relevant error context information.

Check the configuration: The server looks for a configuration file named
arangod.conf on startup. The contents of this file will be used as a base configuration
that can optionally be overridden with command-line configuration parameters. You

should check the config file for the most relevant parameters such as:

server.endpoint: What IP address and port to bind to
log parameters: If and where to log
database.directory: Path the database files are stored in

If the configuration reveals that something is not configured right the config file
should be adjusted and the server be restarted.

Start the server manually and check its output: Starting the server might fail even
before logging is activated so the server will not produce log output. This can happen
if the server is configured to write the logs to a file that the server has no permissions
on. In this case the server cannot log an error to the specified log file but will write a
startup error on stderr instead. Starting the server manually will also allow you to
override specific configuration options, e.g. to turn on/off file or screen logging etc.

Check the TCP port: If the server starts up but does not accept any incoming
connections this might be due to firewall configuration between the server and any
client(s). The server by default will listen on TCP port 8529. Please make sure this
port is actually accessible by other clients if you plan to use ArangoDB in a network
setup.

When using hostnames in the configuration or when connecting, please make sure
the hostname is actually resolvable. Resolving hostnames might invoke DNS, which
can be a source of errors on its own.

It is generally good advice to not use DNS when specifying the endpoints and
connection addresses. Using IP addresses instead will rule out DNS as a source of
errors. Another alternative is to use a hostname specified in the local /etc/hosts file,
which will then bypass DNS.

Test if curl can connect: Once the server is started, you can quickly verify if it
responds to requests at all. This check allows you to determine whether connection
errors are client-specific or not. If at least one client can connect, it is likely that
connection problems of other clients are not due to ArangoDB's configuration but
due to client or in-between network configurations.

You can test connectivity using a simple command such as:

curl --dump - -X GET http://127.0.0.1:8529/_api/version && echo

This should return a response with an HTTP 200 status code when the server is
running. If it does it also means the server is generally accepting connections.

http://127.0.0.1:8529/_api/version

Alternative tools to check connectivity are lynx or ab.

All documents are stored in collections. All collections are stored in a database. The
database object is accessible via the variable db.

Creating a collection is simple. You can use the _create method of the db variable.

arangosh>	db._create("example");

[ArangoCollection	70628,	"example"	(status	loaded)]

After the collection has been created you can easily access it using the path db.example.
The collection currently shows as loaded, meaning that it's loaded into memory. If you
restart the server and access the collection again it will now show as unloaded. You can
also manually unload a collection.

arangosh>	db.example.unload();

arangosh>	db.example;

[ArangoCollection	70628,	"example"	(status	unloaded)]

Whenever you use a collection ArangoDB will automatically load it into memory for you.

In order to create new documents in a collection use the save operation.

arangosh>	db.example.save({	Hello	:	"World"	});

{	"error"	:	false,	"_id"	:	"example/1512420",	"_key"	:	"1512420",	"_rev"	:	"1512420"	}

arangosh>	db.example.save({	"name"	:	"John	Doe",	"age"	:	29	});

{	"error"	:	false,	"_id"	:	"example/1774564",	_key	:	"1774564",	"_rev"	:	"1774564"	}

arangosh>	db.example.save({	"name"	:	"Jane	Smith",	"age"	:	31	});

{	"error"	:	false,	"_id"	:	"example/1993214",	"_key"	:	"1993214",	"_rev"	:	"1993214"	}

Just storing documents would be no fun. We now want to select some of the stored
documents again. In order to select all elements of a collection, one can use the toArray
method:

arangosh>	db.example.toArray()

[

Querying for Documents

		{	

				"_id"	:	"example/1993214",	

				"_key"	:	"1993214",

				"_rev"	:	"1993214",

				"age"	:	31,	

				"name"	:	"Jane	Smith"

		},	

		{	

				"_id"	:	"example/1774564",	

				"_key"	:	"1774564",

				"_rev"	:	"1774564",	

				"age"	:	29,	

				"name"	:	"John	Doe"

		},	

		{	

				"_id"	:	"example/1512420",	

				"_key"	:	"1512420",

				"_rev"	:	"1512420",	

				"Hello"	:	"World"

		}

]

The last document was a mistake – so let's delete it:

arangosh>	db.example.remove("example/1512420")

true

arangosh>	db.example.toArray()

[

		{	

				"_id"	:	"example/1993214",	

				"_key"	:	"1993214",

				"_rev"	:	"1993214",

				"age"	:	31,	

				"name"	:	"Jane	Smith"

		},	

		{	

				"_id"	:	"example/1774564",	

				"_key"	:	"1774564",

				"_rev"	:	"1774564",	

				"age"	:	29,	

				"name"	:	"John	Doe"

		}

]

Now we want to look for a person with a given name. We can use byExample for this.
The method returns a list of documents matching a given example.

arangosh>	db.example.byExample({	name:	"Jane	Smith"	}).toArray()

[

		{	

				"_id"	:	"example/1993214",	

				"_key"	:	"1993214",

				"_rev"	:	"1993214",

				"age"	:	31,	

				"name"	:	"Jane	Smith"

		}

]

While the byExample works very well for simple queries where you combine the
conditions with an 	and	. The syntax above becomes messy for joins and or conditions.
Therefore ArangoDB also supports a full-blown query language, AQL. To run an AQL
query, use the db._query method:.

arangosh>	db._query('FOR	user	IN	example	FILTER	user.name	==	"Jane	Smith"	RETURN	user').toArray()

[

		{	

				"_id"	:	"example/1993214",	

				"_key"	:	"1993214",

				"_rev"	:	"1993214",

				"age"	:	31,	

				"name"	:	"Jane	Smith"

		}

]

Searching for all persons with an age above 30:

arangosh>	db._query('FOR	user	IN	example	FILTER	user.age	>	30	RETURN	user').toArray()

[

		{	

				"_id"	:	"example/1993214",	

				"_key"	:	"1993214",

				"_rev"	:	"1993214",

				"age"	:	31,	

				"name"	:	"Jane	Smith"

		}

]

You can learn all about the query language Aql. Note that _query is a short-cut for
_createStatement and execute. We will come back to these functions when we talk about
cursors.

The ArangoDB server has a graphical front-end, which allows you to inspect the current

ArangoDB's Front-End

state of the server from within your browser. You can use the front-end using the
following URL:

http://localhost:8529/

The front-end allows you to browse through the collections and documents. If you need to
administrate the database, please use the ArangoDB shell described in the next section.

ArangoDB comes with a built-in web interface for administration. The web interface can
be accessed via the URL

http://localhost:8529

assuming you are using the standard port and no user routings. If you have any
application installed, the home page might point to that application instead. In this case
use

http://localhost:8529/_admin/aardvark/index.html

(note: aardvark is the web interface's internal name).

If no database name is specified in the URL, you will in most cases get routed to the web
interface for the _system database. To access the web interface for any other ArangoDB
database, put the database name into the request URI path as follows:

http://localhost:8529/_db/mydb/

The above will load the web interface for the database mydb.

To restrict access to the web interface, use ArangoDB's authentication feature.

The following sections provide a very brief overview of some features offered in the web
interface. Please note that this is not a complete list of features.

The Dashboard tab provides statistics which are polled regularly from the ArangoDB
server.

Accessing the Web Interface

Select Functionality provided by the Web
Interface

Dashboard Tab

http://localhost:8529/_admin/aardvark/index.html
http://localhost:8529/_db/mydb/

The Collections tab shows an overview of the loaded and unloaded collections present in
ArangoDB. System collections (i.e. collections whose names start with an underscore)
are not shown by default.

The list of collections can be restricted using the search bar or by using the filtering at the
top. The filter can also be used to show or hide system collections.

Clicking on a collection will show the documents contained in it. Clicking the small icon on
a collection's badge will bring up a dialog that allows loading/unloading, renaming and
deleting the collection.

Please note that you should not change or delete system collections.

In the list of documents of a collection, you can click on the Add document line to add a
new document to the collection. The document will be created instantly, with a system-
defined key. The key and all other attributes of the document can be adjusted in the
following view.

The Applications tab provides a list of installed Foxx applications. The view is divided into
lists of installed and applications that are available for installation.

Please note that ArangoDB's web interface (aardvark) is a Foxx application itself. Please
also note that installed applications will be listed in both the installed and the available
section. This is intentional because each application can be installed multiple times using
different mount points.

The Graphs tab provides a viewer facility for graph data stored in ArangoDB. It allows
browsing ArangoDB graphs stored in the _graphs system collection or a graph consisting
of an arbitrary vertex and edge collection.

Please note that the graph viewer requires client-side SVG and that you need a browser
capable of rendering that. Especially Internet Explorer browsers older than version 9 are
likely to not support this.

Collections Tab

Applications Tab

Graphs Tab

The AQL Editor tab allows to execute ad-hoc AQL queries.

Type in a query in the bottom box and execute it by pressing the Submit button. The
query result will be shown in the box at the top. The editor provides a few example
queries that can be used as templates.

There is also the option to add own frequently used queries here. Note that own queries
will be stored in the browser's local storage and the web interface has no control over
when the browser's local storage is cleared.

The Tools tab contains a JavaScript shell that can be used to run commands on the
ArangoDB server, a log viewer and a link to the description of ArangoDB's REST API.

The JS Shell menu item provides access to a JavaScript shell that connects to the
database server.

Any valid JavaScript code can be executed inside the shell. The code will be executed
inside your browser. To contact the ArangoDB server you can use the db object, for
example as follows:

				JSH>	db._create("mycollection");

				JSH>	db.mycollection.save({	_key:	"test",	value:	"something"	});

You can use the Logs menu item allows browsing the most recent log entries provided by
the ArangoDB database server.

Note that the server only keeps a limited number of log entries. For real log analyses
write the logs to disk using syslog or a similar mechanism. ArangoDB provides several
startup options for this.

The Logs menu item will only be shown for the 	_system	 database, and is disabled for
any other databases.

The API menu item provides an overview of ArangoDB's built-in HTTP REST API, with
documentation and examples. It should be consulted when there is doubt about API

AQL Editor Tab

Tools Tab

URLs, parameters etc.

This is an introduction to managing databases in ArangoDB from within JavaScript.

While being in an established connection to ArangoDB, the current database can be
changed explicitly by using the db._useDatabase() method. This will switch to the
specified database (provided it exists and the user can connect to it). From this point on,
any following actions in the same shell or connection will use the specified database
unless otherwise specified.

Note: If the database is changed, client drivers need to store the current database name
on their side, too. This is because connections in ArangoDB do not contain any state
information. All state information is contained in the HTTP request/response data.

Connecting to a specific database from arangosh is possible with the above command
after arangosh has been started, but it is also possible to specify a database name when
invoking arangosh. For this purpose, use the command-line parameter --server.database,
e.g.

>	arangosh	--server.database	test	

Please note that commands, actions, scripts or AQL queries should never access
multiple databases, even if they exist. The only intended and supported way in ArangoDB
is to use one database at a time for a command, an action, a script or a query.
Operations started in one database must not switch the database later and continue
operating in another.

Handling Databases

Database Methods

The following methods are available to manage databases via JavaScript. Please note
that several of these methods can be used from the _system database only.

Name

	db._name()	

Returns the name of the current database as a string. ID

	db._id()	

Returns the id of the current database as a string. Path

	db._path()	

Returns the filesystem path of the current database as a string. isSystem

	db._isSystem()	

Returns whether the currently used database is the _system database. The system
database has some special privileges and properties, for example, database
management operations such as create or drop can only be executed from within this
database. Additionally, the _system database itself cannot be dropped. Use Database

	db._useDatabase(name)	

Changes the current database to the database specified by name. Note that the
database specified by name must already exist.

Changing the database might be disallowed in some contexts, for example server-side
actions (including Foxx).

When performing this command from arangosh, the current credentials (username and
password) will be re-used. These credentials might not be valid to connect to the
database specified by name. Additionally, the database only be accessed from certain
endpoints only. In this case, switching the database might not work, and the connection /
session should be closed and restarted with different username and password
credentials and/or endpoint data. Is Database

Working with Databases

	db._listDatabases()	

Returns the list of all databases. This method can only be used from within the _system
database. Create Database

	db._createDatabase(name,	options,	users)	

Creates a new database with the name specified by name. There are restrictions for
database names (see DatabaseNames).

Note that even if the database is created successfully, there will be no change into the
current database to the new database. Changing the current database must explicitly be
requested by using the db._useDatabase method.

The options attribute currently has no meaning and is reserved for future use.

The optional users attribute can be used to create initial users for the new database. If
specified, it must be a list of user objects. Each user object can contain the following
attributes:

username: the user name as a string. This attribute is mandatory.
passwd: the user password as a string. If not specified, then it defaults to the empty
string.
active: a boolean flag indicating whether the user account should be active or not.
The default value is true.
extra: an optional JSON object with extra user information. The data contained in
extra will be stored for the user but not be interpreted further by ArangoDB.

If no initial users are specified, a default user root will be created with an empty string
password. This ensures that the new database will be accessible via HTTP after it is
created.

You can create users in a database if no initial user is specified. Switch into the new
database (username and password must be identical to the current session) and add or
modify users with the following commands.

		require("org/arangodb/users").save(username,	password,	true);

		require("org/arangodb/users").update(username,	password,	true);

		require("org/arangodb/users").remove(username);

This method can only be used from within the _system database. Drop Database

	db._dropDatabase(name)	

Drops the database specified by name. The database specified by name must exist.

Note: Dropping databases is only possible from within the _system database. The
_system database itself cannot be dropped.

Databases are dropped asynchronously, and will be physically removed if all clients have
disconnected and references have been garbage-collected.

Please keep in mind that each database contains its own system collections, which need
to set up when a database is created. This will make the creation of a database take a
while.

Replication is configured on a per-database level, meaning that any replication logging or
applying for a new database must be configured explicitly after a new database has been
created.

Foxx applications are also available only in the context of the database they have been
installed in. A new database will only provide access to the system applications shipped
with ArangoDB (that is the web interface at the moment) and no other Foxx applications
until they are explicitly installed for the particular database.

Notes about Databases

This is an introduction to ArangoDB's interface for collections and how to handle
collections from the JavaScript shell arangosh. For other languages see the
corresponding language API.

The most import call is the call to create a new collection

All collections in ArangoDB have an unique identifier and an unique name. ArangoDB
internally uses the collection's unique identifier to look up collections. This identifier,
however, is managed by ArangoDB and the user has no control over it. In order to allow
users to use their own names, each collection also has an unique name which is
specified by the user. To access a collection from the user perspective, the collection
name should be used, i.e.:

Collection 	db._collection(collection-name)	

A collection is created by a "db._create" call.

For example: Assume that the collection identifier is 7254820 and the name is demo,
then the collection can be accessed as:

db._collection("demo")

If no collection with such a name exists, then null is returned.

There is a short-cut that can be used for non-system collections:

Collection name 	db.collection-name	

This call will either return the collection named db.collection-name or create a new one
with that name and a set of default properties.

Note: Creating a collection on the fly using db.collection-name is not recommend and
does not work in arangosh. To create a new collection, please use

JavaScript Interface to Collections

Address of a Collection

Create 	db._create(collection-name)	

This call will create a new collection called collection-name.

Drop

	collection.drop()	

Drops a collection and all its indexes.

Examples

arangosh>	col	=	db.example;

[ArangoCollection	791550042,	"example"	(type	document,	status	loaded)]

arangosh>	col.drop();

arangosh>	col;

[ArangoCollection	791550042,	"example"	(type	document,	status	deleted)]

Truncate 	collection.truncate()	

Truncates a collection, removing all documents but keeping all its indexes.

Examples

Truncates a collection:

arangosh>	col	=	db.example;

arangosh>	col.save({	"Hello"	:	"World"	});

arangosh>	col.count();

arangosh>	col.truncate();

arangosh>	col.count();

show execution results
Properties

	collection.properties()	

Returns an object containing all collection properties.

waitForSync: If true creating a document will only return after the data was synced to
disk.

journalSize : The size of the journal in bytes.

Collection Methods

isVolatile: If true then the collection data will be kept in memory only and ArangoDB
will not write or sync the data to disk.

keyOptions (optional) additional options for key generation. This is a JSON array
containing the following attributes (note: some of the attributes are optional):

type: the type of the key generator used for the collection.
allowUserKeys: if set to true, then it is allowed to supply own key values in the
_key attribute of a document. If set to false, then the key generator will solely be
responsible for generating keys and supplying own key values in the _key
attribute of documents is considered an error.
increment: increment value for autoincrement key generator. Not used for other
key generator types.
offset: initial offset value for autoincrement key generator. Not used for other key
generator types.

In a cluster setup, the result will also contain the following attributes:

numberOfShards: the number of shards of the collection.

shardKeys: contains the names of document attributes that are used to determine
the target shard for documents.

	collection.properties(properties)	

Changes the collection properties. properties must be a object with one or more of the
following attribute(s):

waitForSync: If true creating a document will only return after the data was synced to
disk.

journalSize : The size of the journal in bytes.

Note: it is not possible to change the journal size after the journal or datafile has been
created. Changing this parameter will only effect newly created journals. Also note that
you cannot lower the journal size to less then size of the largest document already stored
in the collection.

Note: some other collection properties, such as type, isVolatile, or keyOptions cannot be
changed once the collection is created.

Examples

Read all properties

arangosh>	db.example.properties();

show execution results
Change a property

arangosh>	db.example.properties({	waitForSync	:	true	});

show execution results
Figures

	collection.figures()	

Returns an object containing statistics about the collection. Note : Retrieving the figures
will always load the collection into memory.

alive.count: The number of curretly active documents in all datafiles and journals of
the collection. Documents that are contained in the write-ahead log only are not
reported in this figure.
alive.size: The total size in bytes used by all active documents of the collection.
Documents that are contained in the write-ahead log only are not reported in this
figure.
dead.count: The number of dead documents. This includes document versions that
have been deleted or replaced by a newer version. Documents deleted or replaced
that are contained in the write-ahead log only are not reported in this figure.
dead.size: The total size in bytes used by all dead documents.
dead.deletion: The total number of deletion markers. Deletion markers only
contained in the write-ahead log are not reporting in this figure.
datafiles.count: The number of datafiles.
datafiles.fileSize: The total filesize of datafiles (in bytes).
journals.count: The number of journal files.
journals.fileSize: The total filesize of the journal files (in bytes).
compactors.count: The number of compactor files.
compactors.fileSize: The total filesize of the compactor files (in bytes).
shapefiles.count: The number of shape files. This value is deprecated and kept for
compatibility reasons only. The value will always be 0 since ArangoDB 2.0 and
higher.
shapefiles.fileSize: The total filesize of the shape files. This value is deprecated and

kept for compatibility reasons only. The value will always be 0 in ArangoDB 2.0 and
higher.
shapes.count: The total number of shapes used in the collection. This includes
shapes that are not in use anymore. Shapes that are contained in the write-ahead
log only are not reported in this figure.
shapes.size: The total size of all shapes (in bytes). This includes shapes that are not
in use anymore. Shapes that are contained in the write-ahead log only are not
reported in this figure.
attributes.count: The total number of attributes used in the collection. Note: the value
includes data of attributes that are not in use anymore. Attributes that are contained
in the write-ahead log only are not reported in this figure.
attributes.size: The total size of the attribute data (in bytes). Note: the value includes
data of attributes that are not in use anymore. Attributes that are contained in the
write-ahead log only are not reported in this figure.
indexes.count: The total number of indexes defined for the collection, including the
pre-defined indexes (e.g. primary index).
indexes.size: The total memory allocated for indexes in bytes.
maxTick: The tick of the last marker that was stored in a journal of the collection.
This might be 0 if the collection does not yet have a journal.
uncollectedLogfileEntries: The number of markers in the write-ahead log for this
collection that have not been transferred to journals or datafiles.

Note: collection data that are stored in the write-ahead log only are not reported in the
results. When the write-ahead log is collected, documents might be added to journals and
datafiles of the collection, which may modify the figures of the collection.

Additionally, the filesizes of collection and index parameter JSON files are not reported.
These files should normally have a size of a few bytes each. Please also note that the
fileSize values are reported in bytes and reflect the logical file sizes. Some filesystems
may use optimisations (e.g. sparse files) so that the actual physical file size is somewhat
different. Directories and sub-directories may also require space in the file system, but
this space is not reported in the fileSize results.

That means that the figures reported do not reflect the actual disk usage of the collection
with 100% accuracy. The actual disk usage of a collection is normally slightly higher than
the sum of the reported fileSize values. Still the sum of the fileSize values can still be
used as a lower bound approximation of the disk usage.

Examples

arangosh>	db.demo.figures()

show execution results
Load

	collection.load()	

Loads a collection into memory.

Examples

arangosh>	col	=	db.example;

[ArangoCollection	406526042,	"example"	(type	document,	status	loaded)]

arangosh>	col.load();

arangosh>	col;

[ArangoCollection	406526042,	"example"	(type	document,	status	loaded)]

Reserve 	collection.reserve(number)	

Sends a resize hint to the indexes in the collection. The resize hint allows indexes to
reserve space for additional documents (specified by number) in one go.

The reserve hint can be sent before a mass insertion into the collection is started. It
allows indexes to allocate the required memory at once and avoids re-allocations and
possible re-locations.

Not all indexes implement the reserve function at the moment. The indexes that don't
implement it will simply ignore the request. returns the revision id of a collection

Revision

	collection.revision()	

Returns the revision id of the collection

The revision id is updated when the document data is modified, either by inserting,
deleting, updating or replacing documents in it.

The revision id of a collection can be used by clients to check whether data in a collection
has changed or if it is still unmodified since a previous fetch of the revision id.

The revision id returned is a string value. Clients should treat this value as an opaque

string, and only use it for equality/non-equality comparisons. Checksum

	collection.checksum(withRevisions,	withData)	

The checksum operation calculates a CRC32 checksum of the keys contained in
collection collection.

If the optional argument withRevisions is set to true, then the revision ids of the
documents are also included in the checksumming.

If the optional argument withData is set to true, then the actual document data is also
checksummed. Including the document data in checksumming will make the calculation
slower, but is more accurate.

Note: this method is not available in a cluster.

Unload

	collection.unload()	

Starts unloading a collection from memory. Note that unloading is deferred until all query
have finished.

Examples

arangosh>	col	=	db.example;

[ArangoCollection	751310938,	"example"	(type	document,	status	loaded)]

arangosh>	col.unload();

arangosh>	col;

[ArangoCollection	751310938,	"example"	(type	document,	status	unloaded)]

Rename

	collection.rename(new-name)	

Renames a collection using the new-name. The new-name must not already be used for
a different collection. new-name must also be a valid collection name. For more
information on valid collection names please refer to the naming conventions.

If renaming fails for any reason, an error is thrown.

Note: this method is not available in a cluster.

Examples

arangosh>	c	=	db.example;

[ArangoCollection	700061786,	"example"	(type	document,	status	loaded)]

arangosh>	c.rename("better-example");

arangosh>	c;

[ArangoCollection	700061786,	"better-example"	(type	document,	status	loaded)]

Rotate

	collection.rotate()	

Rotates the current journal of a collection. This operation makes the current journal of the
collection a read-only datafile so it may become a candidate for garbage collection. If
there is currently no journal available for the collection, the operation will fail with an error.

Note: this method is not available in a cluster.

Collection

	db._collection(collection-name)	

Returns the collection with the given name or null if no such collection exists.

	db._collection(collection-identifier)	

Returns the collection with the given identifier or null if no such collection exists.
Accessing collections by identifier is discouraged for end users. End users should access
collections using the collection name.

Examples

Get a collection by name:

arangosh>	db._collection("demo");

[ArangoCollection	103749722,	"demo"	(type	document,	status	loaded)]

Get a collection by id:

arangosh>	db._collection(123456);

[ArangoCollection	123456,	"demo"	(type	document,	status	loaded)]

Unknown collection:

arangosh>	db._collection("unknown");

null

Create

	db._create(collection-name)	

Creates a new document collection named collection-name. If the collection name
already exists or if the name format is invalid, an error is thrown. For more information on
valid collection names please refer to the naming conventions.

Database Methods

	db._create(collection-name,	properties)	

properties must be an object with the following attributes:

waitForSync (optional, default false): If true creating a document will only return after
the data was synced to disk.

journalSize (optional, default is a configuration parameter: The maximal size of a
journal or datafile. Note that this also limits the maximal size of a single object. Must
be at least 1MB.

isSystem (optional, default is false): If true, create a system collection. In this case
collection-name should start with an underscore. End users should normally create
non-system collections only. API implementors may be required to create system
collections in very special occasions, but normally a regular collection will do.

isVolatile (optional, default is false): If *true then the collection data is kept in-
memory only and not made persistent. Unloading the collection will cause the
collection data to be discarded. Stopping or re-starting the server will also cause full
loss of data in the collection. Setting this option will make the resulting collection be
slightly faster than regular collections because ArangoDB does not enforce any
synchronization to disk and does not calculate any CRC checksums for datafiles (as
there are no datafiles).

keyOptions (optional): additional options for key generation. If specified, then
keyOptions should be a JSON array containing the following attributes (note: some
of them are optional):

type: specifies the type of the key generator. The currently available generators
are traditional and autoincrement.
allowUserKeys: if set to true, then it is allowed to supply own key values in the
_key attribute of a document. If set to false, then the key generator will solely be
responsible for generating keys and supplying own key values in the _key
attribute of documents is considered an error.
increment: increment value for autoincrement key generator. Not used for other
key generator types.
offset: initial offset value for autoincrement key generator. Not used for other key
generator types.

numberOfShards (optional, default is 1): in a cluster, this value determines the
number of shards to create for the collection. In a single server setup, this option is
meaningless.

shardKeys (optional, default is ["_key"]): in a cluster, this attribute determines which
document attributes are used to determine the target shard for documents.
Documents are sent to shards based on the values they have in their shard key
attributes. The values of all shard key attributes in a document are hashed, and the
hash value is used to determine the target shard. Note that values of shard key
attributes cannot be changed once set. This option is meaningless in a single server
setup.

When choosing the shard keys, one must be aware of the following rules and limitations:
In a sharded collection with more than one shard it is not possible to set up a unique
constraint on an attribute that is not the one and only shard key given in shardKeys. This
is because enforcing a unique constraint would otherwise make a global index necessary
or need extensive communication for every single write operation. Furthermore, if _key is
not the one and only shard key, then it is not possible to set the _key attribute when
inserting a document, provided the collection has more than one shard. Again, this is
because the database has to enforce the unique constraint on the _key attribute and this
can only be done efficiently if this is the only shard key by delegating to the individual
shards.

	db._create(collection-name,	properties,	type)	

Specifies the optional type of the collection, it can either be document or edge. On default
it is document. Instead of giving a type you can also use db._createEdgeCollection or
db._createDocumentCollection.

Examples

With defaults:

arangosh>	c	=	db._create("users");

arangosh>	c.properties();

show execution results
With properties:

arangosh>	c	=	db._create("users",	{	waitForSync	:	true,	journalSize	:	1024	*	1204	});

arangosh>	c.properties();

show execution results

With a key generator:

arangosh>	db._create("users",	{	keyOptions:	{	type:	"autoincrement",	offset:	10,	increment:	5	}	});

arangosh>	db.users.save({	name:	"user	1"	});

arangosh>	db.users.save({	name:	"user	2"	});

arangosh>	db.users.save({	name:	"user	3"	});

show execution results
With a special key option:

arangosh>	db._create("users",	{	keyOptions:	{	allowUserKeys:	false	}	});

arangosh>	db.users.save({	name:	"user	1"	});

arangosh>	db.users.save({	name:	"user	2",	_key:	"myuser"	});

arangosh>	db.users.save({	name:	"user	3"	});

show execution results
All Collections

	db._collections()	

Returns all collections of the given database.

Examples

arangosh>	db._collections();

show execution results
Collection Name

	db.collection-name	

Returns the collection with the given collection-name. If no such collection exists, create
a collection named collection-name with the default properties.

Examples

arangosh>	db.example;

[ArangoCollection	394139738,	"example"	(type	document,	status	loaded)]

Drop

	db._drop(collection)	

Drops a collection and all its indexes.

	db._drop(collection-identifier)	

Drops a collection identified by collection-identifier and all its indexes. No error is thrown
if there is no such collection.

	db._drop(collection-name)	

Drops a collection named collection-name and all its indexes. No error is thrown if there
is no such collection.

Examples

Drops a collection:

arangosh>	col	=	db.example;

[ArangoCollection	751507546,	"example"	(type	document,	status	loaded)]

arangosh>	db._drop(col);

arangosh>	col;

[ArangoCollection	751507546,	"example"	(type	document,	status	loaded)]

Drops a collection identified by name:

arangosh>	col	=	db.example;

[ArangoCollection	561911898,	"example"	(type	document,	status	loaded)]

arangosh>	db._drop("example");

arangosh>	col;

[ArangoCollection	561911898,	"example"	(type	document,	status	deleted)]

Truncate

	db._truncate(collection)	

Truncates a collection, removing all documents but keeping all its indexes.

	db._truncate(collection-identifier)	

Truncates a collection identified by collection-identified. No error is thrown if there is no
such collection.

	db._truncate(collection-name)	

Truncates a collection named collection-name. No error is thrown if there is no such
collection.

Examples

Truncates a collection:

arangosh>	col	=	db.example;

arangosh>	col.save({	"Hello"	:	"World"	});

arangosh>	col.count();

arangosh>	db._truncate(col);

arangosh>	col.count();

show execution results
Truncates a collection identified by name:

arangosh>	col	=	db.example;

arangosh>	col.save({	"Hello"	:	"World"	});

arangosh>	col.count();

arangosh>	db._truncate("example");

arangosh>	col.count();

show execution results

This is an introduction to ArangoDB's interface for documents to and how handle
documents from the JavaScript shell arangosh. For other languages see the
corresponding language API.

Documents in ArangoDB are JSON objects. These objects can be nested (to any depth)
and may contain lists. Each document is uniquely identified by its document handle.

For example:

{	

		"firstName"	:	"Hugo",	

		"lastName"	:	"Schlonz",	

		"address"	:	{	

				"city"	:	"Hier",	

				"street"	:	"Strasse	1"	

		},	

		"hobbies"	:	[

				"swimming",	

				"biking",	

				"programming"	

],	

		"_id"	:	"demo/schlonz",	

		"_rev"	:	"13728680",	

		"_key"	:	"schlonz"	

}

All documents contain special attributes: the document handle in _id, the document's
unique key in _key and and the ETag aka document revision in _rev. The value of the
_key attribute can be specified by the user when creating a document. _id and _key
values are immutable once the document has been created. The _rev value is
maintained by ArangoDB autonomously.

A document handle uniquely identifies a document in the database. It is a string and
consists of the collection's name and the document key (_key attribute) separated by /.

As ArangoDB supports MVCC, documents can exist in more than one revision. The
document revision is the MVCC token used to identify a particular revision of a document.
It is a string value currently containing an integer number and is unique within the list of
document revisions for a single document. Document revisions can be used to
conditionally update, replace or delete documents in the database. In order to find a

Documents, Identifiers, Handles

particular revision of a document, you need the document handle and the document
revision.

ArangoDB currently uses 64bit unsigned integer values to maintain document revisions
internally. When returning document revisions to clients, ArangoDB will put them into a
string to ensure the revision id is not clipped by clients that do not support big integers.
Clients should treat the revision id returned by ArangoDB as an opaque string when they
store or use it locally. This will allow ArangoDB to change the format of revision ids later if
this should be required. Clients can use revisions ids to perform simple equality/non-
equality comparisons (e.g. to check whether a document has changed or not), but they
should not use revision ids to perform greater/less than comparisons with them to check
if a document revision is older than one another, even if this might work for some cases.

Note: Revision ids have been returned as integers up to including ArangoDB 1.1

Document Etag: The document revision enclosed in double quotes. The revision is
returned by several HTTP API methods in the Etag HTTP header.

All documents in ArangoDB have a document handle. This handle uniquely defines a
document and is managed by ArangoDB. The interface allows you to access the
documents of a collection as:

db.collection.document("document-handle")

For example: Assume that the document handle, which is stored in the _id field of the
document, is demo/362549 and the document lives in a collection named demo, then that
document can be accessed as:

db.demo.document("demo/362549736")

Because the document handle is unique within the database, you can leave out the
collection and use the shortcut:

db._document("demo/362549736")

Each document also has a document revision or ETag which is returned in the _rev field
when requesting a document. The document's key is returned in the _key attribute.

Address and ETag of a Document

All 	collection.all()	

Selects all documents of a collection and returns a cursor. You can use toArray, next, or
hasNext to access the result. The result can be limited using the skip and limit operator.

Examples

Use toArray to get all documents at once:

arangosh>	db.five.all().toArray();

show execution results
Use limit to restrict the documents:

arangosh>	db.five.all().limit(2).toArray();

show execution results
Query by example 	collection.byExample(example)	

Selects all documents of a collection that match the specified example and returns a
cursor.

You can use toArray, next, or hasNext to access the result. The result can be limited
using the skip and limit operator.

An attribute name of the form a.b is interpreted as attribute path, not as attribute. If you
use

{ a : { c : 1 } }

as example, then you will find all documents, such that the attribute a contains a
document of the form {c : 1 }. For example the document

{ a : { c : 1 }, b : 1 }

will match, but the document

Collection Methods

{ a : { c : 1, b : 1 } }

will not.

However, if you use

{ a.c : 1 },

then you will find all documents, which contain a sub-document in a that has an attribute
c of value 1. Both the following documents

{ a : { c : 1 }, b : 1 } and

{ a : { c : 1, b : 1 } }

will match.

	collection.byExample(path1,	value1,	...)	

As alternative you can supply a list of paths and values.

Examples

Use toArray to get all documents at once:

arangosh>	db.users.all().toArray();

arangosh>	db.users.byExample({	"_id"	:	"users/20"	}).toArray();

arangosh>	db.users.byExample({	"name"	:	"Gerhard"	}).toArray();

arangosh>	db.users.byExample({	"name"	:	"Helmut",	"_id"	:	"users/15"	}).toArray();

show execution results
Use next to loop over all documents:

arangosh>	var	a	=	db.users.byExample({"name"	:	"Angela"	});

arangosh>	while	(a.hasNext())	print(a.next());

show execution results
First Example 	collection.firstExample(example)	

Returns the first document of a collection that matches the specified example or null. The
example must be specified as paths and values. See byExample for details.

	collection.firstExample(path1,	value1,	...)	

As alternative you can supply a list of paths and values.

Examples

arangosh>	db.users.firstExample("name",	"Angela");

show execution results
Range 	collection.range(attribute,	left,	right)	

Selects all documents of a collection such that the attribute is greater or equal than left
and strictly less than right.

You can use toArray, next, or hasNext to access the result. The result can be limited
using the skip and limit operator.

An attribute name of the form a.b is interpreted as attribute path, not as attribute.

For range queries it is required that a skiplist index is present for the queried attribute. If
no skiplist index is present on the attribute, an error will be thrown.

Examples

Use toArray to get all documents at once:

arangosh>	db.old.range("age",	10,	30).toArray();

show execution results
Closed range 	collection.closedRange(attribute,	left,	right)	

Selects all documents of a collection such that the attribute is greater or equal than left
and less or equal than right.

You can use toArray, next, or hasNext to access the result. The result can be limited
using the skip and limit operator.

An attribute name of the form a.b is interpreted as attribute path, not as attribute.

Examples

Use toArray to get all documents at once:

arangosh>	db.old.closedRange("age",	10,	30).toArray();

show execution results
Any 	collection.any()	

Returns a random document from the collection or null if none exists. Count

	collection.count()	

Returns the number of living documents in the collection.

Examples

arangosh>	db.users.count();

0

toArray 	collection.toArray()	

Converts the collection into an array of documents. Never use this call in a production
environment. Document

	collection.document(document)	

The document method finds a document given its identifier or a document object
containing the _id or _key attribute. The method returns the document if it can be found.

An error is thrown if _rev is specified but the document found has a different revision
already. An error is also thrown if no document exists with the given _id or _key value.

Please note that if the method is executed on the arangod server (e.g. from inside a Foxx
application), an immutable document object will be returned for performance reasons. It
is not possible to change attributes of this immutable object. To update or patch the
returned document, it needs to be cloned/copied into a regular JavaScript object first.
This is not necessary if the document method is called from out of arangosh or from any
other client.

	collection.document(document-handle)	

As before. Instead of document a document-handle can be passed as first argument.

Examples

Returns the document for a document-handle:

arangosh>	db.example.document("example/2873916");

show execution results
An error is raised if the document is unknown:

arangosh>	db.example.document("example/4472917");

[ArangoError	1202:	document	/_api/document/example/4472917	not	found]

An error is raised if the handle is invalid:

arangosh>	db.example.document("");

[ArangoError	1205:	illegal	document	handle]

Exists

	collection.exists(document)	

The exists method determines whether a document exists given its identifier. Instead of
returning the found document or an error, this method will return either true or false. It
can thus be used for easy existence checks.

The document method finds a document given its identifier. It returns the document. Note
that the returned document contains two pseudo-attributes, namely _id and _rev. _id
contains the document-handle and _rev the revision of the document.

No error will be thrown if the sought document or collection does not exist. Still this
method will throw an error if used improperly, e.g. when called with a non-document
handle, a non-document, or when a cross-collection request is performed.

	collection.exists(document-handle)	

As before. Instead of document a document-handle can be passed as first argument.

Save

	collection.save(data)	

Creates a new document in the collection from the given data. The data must be a hash
array. It must not contain attributes starting with _.

The method returns a document with the attributes _id and _rev. The attribute _id
contains the document handle of the newly created document, the attribute _rev contains
the document revision.

	collection.save(data,	waitForSync)	

Creates a new document in the collection from the given data as above. The optional
waitForSync parameter can be used to force synchronization of the document creation
operation to disk even in case that the waitForSync flag had been disabled for the entire
collection. Thus, the waitForSync parameter can be used to force synchronization of just
specific operations. To use this, set the waitForSync parameter to true. If the waitForSync
parameter is not specified or set to false, then the collection's default waitForSync
behavior is applied. The waitForSync parameter cannot be used to disable
synchronization for collections that have a default waitForSync value of true.

Note: since ArangoDB 2.2, insert is an alias for save.

Examples

arangosh>	db.example.save({	Hello	:	"World"	});

arangosh>	db.example.save({	Hello	:	"World"	},	true);

show execution results
Replace

	collection.replace(document,	data)	

Replaces an existing document. The document must be a document in the current
collection. This document is then replaced with the data given as second argument.

The method returns a document with the attributes _id, _rev and {_oldRev. The attribute
_id contains the document handle of the updated document, the attribute _rev contains
the document revision of the updated document, the attribute _oldRev contains the
revision of the old (now replaced) document.

If there is a conflict, i. e. if the revision of the document does not match the revision in the
collection, then an error is thrown.

	collection.replace(document,	data,	true)	 or 	collection.replace(document,	data,

overwrite:	true)	

As before, but in case of a conflict, the conflict is ignored and the old document is
overwritten.

	collection.replace(document,	data,	true,	waitForSync)	 or 	collection.replace(document,
data,	overwrite:	true,	waitForSync:	true	or	false)	

The optional waitForSync parameter can be used to force synchronization of the
document replacement operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync parameter can be used to force
synchronization of just specific operations. To use this, set the waitForSync parameter to
true. If the waitForSync parameter is not specified or set to false, then the collection's
default waitForSync behavior is applied. The waitForSync parameter cannot be used to
disable synchronization for collections that have a default waitForSync value of true. ///m
	collection.replace(document-handle,	data)	

As before. Instead of document a document-handle can be passed as first argument.

Examples

Create and update a document:

arangosh>	a1	=	db.example.save({	a	:	1	});

arangosh>	a2	=	db.example.replace(a1,	{	a	:	2	});

arangosh>	a3	=	db.example.replace(a1,	{	a	:	3	});

show execution results
Use a document handle:

arangosh>	a1	=	db.example.save({	a	:	1	});

arangosh>	a2	=	db.example.replace("example/3903044",	{	a	:	2	});

show execution results
Update

	collection.update(document,	data,	overwrite,	keepNull,	waitForSync)	 or
	collection.update(document,	data,	overwrite:	true	or	false,	keepNull:	true	or	false,

waitForSync:	true	or	false)	

Updates an existing document. The document must be a document in the current
collection. This document is then patched with the data given as second argument. The

optional overwrite parameter can be used to control the behavior in case of version
conflicts (see below). The optional keepNull parameter can be used to modify the
behavior when handling null values. Normally, null values are stored in the database. By
setting the keepNull parameter to false, this behavior can be changed so that all
attributes in data with null values will be removed from the target document.

The optional waitForSync parameter can be used to force synchronization of the
document update operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync parameter can be used to force
synchronization of just specific operations. To use this, set the waitForSync parameter to
true. If the waitForSync parameter is not specified or set to false, then the collection's
default waitForSync behavior is applied. The waitForSync parameter cannot be used to
disable synchronization for collections that have a default waitForSync value of true.

The method returns a document with the attributes _id, _rev and _oldRev. The attribute
_id contains the document handle of the updated document, the attribute _rev contains
the document revision of the updated document, the attribute _oldRev contains the
revision of the old (now replaced) document.

If there is a conflict, i. e. if the revision of the document does not match the revision in the
collection, then an error is thrown.

	collection.update(document,	data,	true)	

As before, but in case of a conflict, the conflict is ignored and the old document is
overwritten.

collection.update(document-handle, data)`

As before. Instead of document a document-handle can be passed as first argument.

Examples

Create and update a document:

arangosh>	a1	=	db.example.save({"a"	:	1});

arangosh>	a2	=	db.example.update(a1,	{"b"	:	2,	"c"	:	3});

arangosh>	a3	=	db.example.update(a1,	{"d"	:	4});

arangosh>	a4	=	db.example.update(a2,	{"e"	:	5,	"f"	:	6	});

arangosh>	db.example.document(a4);

arangosh>	a5	=	db.example.update(a4,	{"a"	:	1,	c	:	9,	e	:	42	});

arangosh>	db.example.document(a5);

show execution results
Use a document handle:

arangosh>	a1	=	db.example.save({"a"	:	1});

arangosh>	a2	=	db.example.update("example/18612115",	{	"x"	:	1,	"y"	:	2	});

show execution results
Use the keepNull parameter to remove attributes with null values:

arangosh>	db.example.save({"a"	:	1});

arangosh>	db.example.update("example/19988371",	{	"b"	:	null,	"c"	:	null,	"d"	:	3	});

arangosh>	db.example.document("example/19988371");

arangosh>	db.example.update("example/19988371",	{	"a"	:	null	},	false,	false);

arangosh>	db.example.document("example/19988371");

arangosh>	db.example.update("example/19988371",	{	"b"	:	null,	"c":	null,	"d"	:	null	},	false,	false);

arangosh>	db.example.document("example/19988371");

show execution results
Patching array values:

arangosh>	db.example.save({"a"	:	{	"one"	:	1,	"two"	:	2,	"three"	:	3	},	"b"	:	{	}});

arangosh>	db.example.update("example/20774803",	{"a"	:	{	"four"	:	4	},	"b"	:	{	"b1"	:	1	}});

arangosh>	db.example.document("example/20774803");

arangosh>	db.example.update("example/20774803",	{	"a"	:	{	"one"	:	null	},	"b"	:	null	},	false,	false);

arangosh>	db.example.document("example/20774803");

show execution results
Remove

	collection.remove(document)	

Removes a document. If there is revision mismatch, then an error is thrown.

	collection.remove(document,	true)	

Removes a document. If there is revision mismatch, then mismatch is ignored and
document is deleted. The function returns true if the document existed and was deleted.
It returns false, if the document was already deleted.

	collection.remove(document,	true,	waitForSync)	

The optional waitForSync parameter can be used to force synchronization of the
document deletion operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync parameter can be used to force
synchronization of just specific operations. To use this, set the waitForSync parameter to
true. If the waitForSync parameter is not specified or set to false, then the collection's
default waitForSync behavior is applied. The waitForSync parameter cannot be used to
disable synchronization for collections that have a default waitForSync value of true.

	collection.remove(document-handle,	data)	

As before. Instead of document a document-handle can be passed as first argument.

Examples

Remove a document:

arangosh>	a1	=	db.example.save({	a	:	1	});

arangosh>	db.example.document(a1);

arangosh>	db.example.remove(a1);

arangosh>	db.example.document(a1);

show execution results
Remove a document with a conflict:

arangosh>	a1	=	db.example.save({	a	:	1	});

arangosh>	a2	=	db.example.replace(a1,	{	a	:	2	});

arangosh>	db.example.remove(a1);

arangosh>	db.example.remove(a1,	true);

arangosh>	db.example.document(a1);

show execution results
Remove By Example 	collection.removeByExample(example)	

Removes all documents matching an example.

	collection.removeByExample(document,	waitForSync)	

The optional waitForSync parameter can be used to force synchronization of the
document deletion operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync parameter can be used to force
synchronization of just specific operations. To use this, set the waitForSync parameter to
true. If the waitForSync parameter is not specified or set to false, then the collection's

default waitForSync behavior is applied. The waitForSync parameter cannot be used to
disable synchronization for collections that have a default waitForSync value of true.

	collection.removeByExample(document,	waitForSync,	limit)	

The optional limit parameter can be used to restrict the number of removals to the
specified value. If limit is specified but less than the number of documents in the
collection, it is undefined which documents are removed.

Examples

arangosh>	db.example.removeByExample({Hello	:	"world"});

1

Replace By Example 	collection.replaceByExample(example,	newValue)	

Replaces all documents matching an example with a new document body. The entire
document body of each document matching the example will be replaced with newValue.
The document meta-attributes such as _id, _key, _from, _to will not be replaced.

	collection.replaceByExample(document,	newValue,	waitForSync)	

The optional waitForSync parameter can be used to force synchronization of the
document replacement operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync parameter can be used to force
synchronization of just specific operations. To use this, set the waitForSync parameter to
true. If the waitForSync parameter is not specified or set to false, then the collection's
default waitForSync behavior is applied. The waitForSync parameter cannot be used to
disable synchronization for collections that have a default waitForSync value of true.

	collection.replaceByExample(document,	newValue,	waitForSync,	limit)	

The optional limit parameter can be used to restrict the number of replacements to the
specified value. If limit is specified but less than the number of documents in the
collection, it is undefined which documents are replaced.

Examples

arangosh>	db.example.replaceByExample({	Hello:	"world"	},	{Hello:	"mars"},	false,	5);

1

Update By Example 	collection.updateByExample(example,	newValue)	

Partially updates all documents matching an example with a new document body.
Specific attributes in the document body of each document matching the example will be
updated with the values from newValue. The document meta-attributes such as _id,
_key, _from, _to cannot be updated.

	collection.updateByExample(document,	newValue,	keepNull,	waitForSync)	

The optional keepNull parameter can be used to modify the behavior when handling null
values. Normally, null values are stored in the database. By setting the keepNull
parameter to false, this behavior can be changed so that all attributes in data with null
values will be removed from the target document.

The optional waitForSync parameter can be used to force synchronization of the
document replacement operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync parameter can be used to force
synchronization of just specific operations. To use this, set the waitForSync parameter to
true. If the waitForSync parameter is not specified or set to false, then the collection's
default waitForSync behavior is applied. The waitForSync parameter cannot be used to
disable synchronization for collections that have a default waitForSync value of true.

	collection.updateByExample(document,	newValue,	keepNull,	waitForSync,	limit)	

The optional limit parameter can be used to restrict the number of updates to the
specified value. If limit is specified but less than the number of documents in the
collection, it is undefined which documents are updated.

Examples

arangosh>	db.example.updateByExample({	Hello:	"world"	},	{	Hello:	"foo",	Hello:	"bar"	},	false);

1

First 	collection.first(count)	

The first method returns the n first documents from the collection, in order of document
insertion/update time.

If called with the count argument, the result is a list of up to count documents. If count is
bigger than the number of documents in the collection, then the result will contain as
many documents as there are in the collection. The result list is ordered, with the "oldest"

documents being positioned at the beginning of the result list.

When called without an argument, the result is the first document from the collection. If
the collection does not contain any documents, the result returned is null.

Note: this method is not supported in sharded collections with more than one shard.

Examples

arangosh>	db.example.first(1);

show execution results

arangosh>	db.example.first();

show execution results
Last 	collection.last(count)	

The last method returns the n last documents from the collection, in order of document
insertion/update time.

If called with the count argument, the result is a list of up to count documents. If count is
bigger than the number of documents in the collection, then the result will contain as
many documents as there are in the collection. The result list is ordered, with the "latest"
documents being positioned at the beginning of the result list.

When called without an argument, the result is the last document from the collection. If
the collection does not contain any documents, the result returned is null.

Note: this method is not supported in sharded collections with more than one shard.

Examples

arangosh>	db.example.last(2);

show execution results

arangosh>	db.example.last(1);

show execution results

Document

	db._document(document)	

This method finds a document given its identifier. It returns the document if the document
exists. An error is throw if no document with the given identifier exists, or if the specified
_rev value does not match the current revision of the document.

Note: If the method is executed on the arangod server (e.g. from inside a Foxx
application), an immutable document object will be returned for performance reasons. It
is not possible to change attributes of this immutable object. To update or patch the
returned document, it needs to be cloned/copied into a regular JavaScript object first.
This is not necessary if the _document method is called from out of arangosh or from any
other client.

	db._document(document-handle)	

As before. Instead of document a document-handle can be passed as first argument.

Examples

Returns the document:

arangosh>	db._document("example/12345");

show execution results
Exists

	db._exists(document)	

This method determines whether a document exists given its identifier. Instead of
returning the found document or an error, this method will return either true or false. It
can thus be used for easy existence checks.

No error will be thrown if the sought document or collection does not exist. Still this
method will throw an error if used improperly, e.g. when called with a non-document
handle.

Database Methods

	db._exists(document-handle)	

As before, but instead of a document a document-handle can be passed. Replace

	db._replace(document,	data)	

The method returns a document with the attributes _id, _rev and _oldRev. The attribute
_id contains the document handle of the updated document, the attribute _rev contains
the document revision of the updated document, the attribute _oldRev contains the
revision of the old (now replaced) document.

If there is a conflict, i. e. if the revision of the document does not match the revision in the
collection, then an error is thrown.

	db._replace(document,	data,	true)	

As before, but in case of a conflict, the conflict is ignored and the old document is
overwritten.

	db._replace(document,	data,	true,	waitForSync)	

The optional waitForSync parameter can be used to force synchronization of the
document replacement operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync parameter can be used to force
synchronization of just specific operations. To use this, set the waitForSync parameter to
true. If the waitForSync parameter is not specified or set to false, then the collection's
default waitForSync behavior is applied. The waitForSync parameter cannot be used to
disable synchronization for collections that have a default waitForSync value of true.

	db._replace(document-handle,	data)	

As before. Instead of document a document-handle can be passed as first argument.

Examples

Create and replace a document:

arangosh>	a1	=	db.example.save({	a	:	1	});

arangosh>	a2	=	db._replace(a1,	{	a	:	2	});

arangosh>	a3	=	db._replace(a1,	{	a	:	3	});

show execution results
Update

	db._update(document,	data,	overwrite,	keepNull,	waitForSync)	

Updates an existing document. The document must be a document in the current
collection. This document is then patched with the data given as second argument. The
optional overwrite parameter can be used to control the behavior in case of version
conflicts (see below). The optional keepNull parameter can be used to modify the
behavior when handling null values. Normally, null values are stored in the database. By
setting the keepNull parameter to false, this behavior can be changed so that all
attributes in data with null values will be removed from the target document.

The optional waitForSync parameter can be used to force synchronization of the
document update operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync parameter can be used to force
synchronization of just specific operations. To use this, set the waitForSync parameter to
true. If the waitForSync parameter is not specified or set to false, then the collection's
default waitForSync behavior is applied. The waitForSync parameter cannot be used to
disable synchronization for collections that have a default waitForSync value of true*.

The method returns a document with the attributes _id, _rev and _oldRev. The attribute
_id contains the document handle of the updated document, the attribute _rev contains
the document revision of the updated document, the attribute _oldRev contains the
revision of the old (now replaced) document.

If there is a conflict, i. e. if the revision of the document does not match the revision in the
collection, then an error is thrown.

	db._update(document,	data,	true)	

As before, but in case of a conflict, the conflict is ignored and the old document is
overwritten.

	db._update(document-handle,	data)	

As before. Instead of document a document-handle can be passed as first argument.

Examples

Create and update a document:

arangosh>	a1	=	db.example.save({	a	:	1	});

arangosh>	a2	=	db._update(a1,	{	b	:	2	});

arangosh>	a3	=	db._update(a1,	{	c	:	3	});

show execution results
Remove

	db._remove(document)	

Removes a document. If there is revision mismatch, then an error is thrown.

	db._remove(document,	true)	

Removes a document. If there is revision mismatch, then mismatch is ignored and
document is deleted. The function returns true if the document existed and was deleted.
It returns false, if the document was already deleted.

	db._remove(document,	true,	waitForSync)	 or 	db._remove(document,	{overwrite:	true	or
false,	waitForSync:	true	or	false})	

The optional waitForSync parameter can be used to force synchronization of the
document deletion operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync parameter can be used to force
synchronization of just specific operations. To use this, set the waitForSync parameter to
true. If the waitForSync parameter is not specified or set to false, then the collection's
default waitForSync behavior is applied. The waitForSync parameter cannot be used to
disable synchronization for collections that have a default waitForSync value of true.

	db._remove(document-handle,	data)	

As before. Instead of document a document-handle can be passed as first argument.

Examples

Remove a document:

arangosh>	a1	=	db.example.save({	a	:	1	});

arangosh>	db._remove(a1);

arangosh>	db._remove(a1);

arangosh>	db._remove(a1,	true);

show execution results
Remove a document with a conflict:

arangosh>	a1	=	db.example.save({	a	:	1	});

arangosh>	a2	=	db._replace(a1,	{	a	:	2	});

arangosh>	db._remove(a1);

arangosh>	db._remove(a1,	true);

arangosh>	db._document(a1);

show execution results
Remove a document using new signature:

arangosh>	db.example.save({	a:		1	});

arangosh>	db.example.remove("example/11265325374",	{overwrite:	true,	waitForSync:	false})

show execution results

This is an introduction to ArangoDB's interface for edges and how to handle edges from
the JavaScript shell arangosh. For other languages see the corresponding language API.

Edges in ArangoDB are special documents. In addition to the internal attributes _key, _id
and _rev, they have two attributes _from and _to, which contain document handles,
namely the start-point and the end-point of the edge. The values of _from and _to are
immutable once saved.

Edge collections are special collections that store edge documents. Edge documents are
connection documents that reference other documents. The type of a collection must be
specified when a collection is created and cannot be changed afterwards.

Save

	edge-collection.save(from,	to,	document)	

Saves a new edge and returns the document-handle. from and to must be documents or
document references.

	edge-collection.save(from,	to,	document,	waitForSync)	

The optional waitForSync parameter can be used to force synchronization of the
document creation operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync parameter can be used to force
synchronization of just specific operations. To use this, set the waitForSync parameter to
true. If the waitForSync parameter is not specified or set to false, then the collection's
default waitForSync behavior is applied. The waitForSync parameter cannot be used to
disable synchronization for collections that have a default waitForSync value of true.

Examples

arangosh>	v1	=	db.vertex.save({	name	:	"vertex	1"	});

arangosh>	v2	=	db.vertex.save({	name	:	"vertex	2"	});

arangosh>	e1	=	db.relation.save(v1,	v2,	{	label	:	"knows"	});

arangosh>	db._document(e1);

Edges, Identifiers, Handles

Working with Edges

show execution results
Edges

	edge-collection.edges(vertex)	

The edges operator finds all edges starting from (outbound) or ending in (inbound)
vertex.

	edge-collection.edges(vertices)	

The edges operator finds all edges starting from (outbound) or ending in (inbound) a
document from vertices, which must a list of documents or document handles.

Examples

arangosh>	db.relation.edges("vertex/1593622");

[ArangoError	1203:	collection	not	found]

InEdges

	edge-collection.inEdges(vertex)	

The edges operator finds all edges ending in (inbound) vertex.

	edge-collection.inEdges(vertices)	

The edges operator finds all edges ending in (inbound) a document from vertices, which
must a list of documents or document handles.

Examples

arangosh>	db.relation.inEdges("vertex/1528086");

[ArangoError	1203:	collection	not	found]

arangosh>	db.relation.inEdges("vertex/1593622");

[ArangoError	1203:	collection	not	found]

OutEdges

	edge-collection.outEdges(vertex)	

The edges operator finds all edges starting from (outbound) vertices.

	edge-collection.outEdges(vertices)	

The edges operator finds all edges starting from (outbound) a document from vertices,
which must a list of documents or document handles.

Examples

arangosh>	db.relation.inEdges("vertex/1528086");

[ArangoError	1203:	collection	not	found]

arangosh>	db.relation.inEdges("vertex/1593622");

[ArangoError	1203:	collection	not	found]

Simple queries can be used if the query condition is straight forward, i.e., a document
reference, all documents, a query-by-example, or a simple geo query. In a simple query
you can specify exactly one collection and one query criteria. In the following sections we
describe the JavaScript shell interface for simple queries, which you can use within the
ArangoDB shell and within actions and transactions. For other languages see the
corresponding language API documentation.

If a query returns a cursor, then you can use hasNext and next to iterate over the result
set or toArray to convert it to an array.

If the number of query results is expected to be big, it is possible to limit the amount of
documents transferred between the server and the client to a specific value. This value is
called batchSize. The batchSize can optionally be set before or when a simple query is
executed. If the server has more documents than should be returned in a single batch,
the server will set the hasMore attribute in the result. It will also return the id of the server-
side cursor in the id attribute in the result. This id can be used with the cursor API to fetch
any outstanding results from the server and dispose the server-side cursor afterwards.

The initial batchSize value can be set using the setBatchSize method that is available for
each type of simple query, or when the simple query is executed using its execute
method. If no batchSize value is specified, the server will pick a reasonable default value.

You can find a list of queries at Collection Methods.

Simple Queries

The ArangoDB allows to select documents based on geographic coordinates. In order for
this to work, a geo-spatial index must be defined. This index will use a very elaborate
algorithm to lookup neighbors that is a magnitude faster than a simple R* index.

In general a geo coordinate is a pair of latitude and longitude. This can either be a list
with two elements like [-10, +30] (latitude first, followed by longitude) or an object like
`{lon: -10, lat: +30}. In order to find all documents within a given radius around a
coordinate use the within operator. In order to find all documents near a given document
use the near operator.

It is possible to define more than one geo-spatial index per collection. In this case you
must give a hint using the geo operator which of indexes should be used in a query.

Near 	collection.near(latitude,	longitude)	

The returned list is sorted according to the distance, with the nearest document to the
coordinate (latitude, longitude) coming first. If there are near documents of equal
distance, documents are chosen randomly from this set until the limit is reached. It is
possible to change the limit using the limit operator.

In order to use the near operator, a geo index must be defined for the collection. This
index also defines which attribute holds the coordinates for the document. If you have
more then one geo-spatial index, you can use the geo operator to select a particular
index.

Note: near does not support negative skips. However, you can still use limit followed to
skip.

	collection.near(latitude,	longitude).limit(limit)	

Limits the result to limit documents instead of the default 100.

Note: Unlike with multiple explicit limits, limit will raise the implicit default limit imposed by
within.

	collection.near(latitude,	longitude).distance()	

This will add an attribute distance to all documents returned, which contains the distance

Geo Queries

between the given point and the document in meter.

	collection.near(latitude,	longitude).distance(name)	

This will add an attribute name to all documents returned, which contains the distance
between the given point and the document in meter.

Examples

To get the nearst two locations:

arangosh>	db.geo.near(0,0).limit(2).toArray();

TypeError:	Cannot	call	method	'near'	of	undefined

If you need the distance as well, then you can use the distance operator:

arangosh>	db.geo.near(0,0).distance().limit(2).toArray();

TypeError:	Cannot	call	method	'near'	of	undefined

Within 	collection.within(latitude,	longitude,	radius)	

This will find all documents within a given radius around the coordinate (latitude,
longitude). The returned list is sorted by distance, beginning with the nearest document.

In order to use the within operator, a geo index must be defined for the collection. This
index also defines which attribute holds the coordinates for the document. If you have
more then one geo-spatial index, you can use the geo operator to select a particular
index.

	collection.within(latitude,	longitude,	radius).distance()	

This will add an attribute _distance to all documents returned, which contains the
distance between the given point and the document in meter.

	collection.within(latitude,	longitude,	radius).distance(name)	

This will add an attribute name to all documents returned, which contains the distance
between the given point and the document in meter.

Examples

To find all documents within a radius of 2000 km use:

arangosh>	db.geo.within(0,	0,	2000	*	1000).distance().toArray();

TypeError:	Cannot	call	method	'within'	of	undefined

Geo 	collection.geo(location-attribute)	

Looks up a geo index defined on attribute location-attribute.

Returns a geo index object if an index was found. The near or within operators can then
be used to execute a geo-spatial query on this particular index.

This is useful for collections with multiple defined geo indexes.

	collection.geo(location-attribute,	true)	

Looks up a geo index on a compound attribute location-attribute.

Returns a geo index object if an index was found. The near or within operators can then
be used to execute a geo-spatial query on this particular index.

	collection.geo(latitude-attribute,	longitude-attribute)	

Looks up a geo index defined on the two attributes latitude-attribute and longitude-
attribute.

Returns a geo index object if an index was found. The near or within operators can then
be used to execute a geo-spatial query on this particular index.

Examples

Assume you have a location stored as list in the attribute home and a destination stored
in the attribute work. Then you can use the geo operator to select which geo-spatial
attributes (and thus which index) to use in a near query.

arango>	for	(i	=	-90;		i	<=	90;		i	+=	10)	{

.......>			for	(j	=	-180;		j	<=	180;		j	+=	10)	{

.......>					db.complex.save({	name	:	"Name/"	+	i	+	"/"	+	j,

.......>																							home	:	[i,	j],

.......>																							work	:	[-i,	-j]	});

.......>			}

.......>	}

arango>	db.complex.near(0,	170).limit(5);

exception	in	file	'/simple-query'	at	1018,5:	a	geo-index	must	be	known

arango>	db.complex.ensureGeoIndex(""home"");

arango>	db.complex.near(0,	170).limit(5).toArray();

[{	"_id"	:	"complex/74655276",	"_key"	:	"74655276",	"_rev"	:	"74655276",	"name"	:

"Name/0/170",	"home"	:	[0,	170],	"work"	:	[0,	-170]	},

		{	"_id"	:	"complex/74720812",	"_key"	:	"74720812",	"_rev"	:	"74720812",	"name"	:

"Name/0/180",	"home"	:	[0,	180],	"work"	:	[0,	-180]	},

		{	"_id"	:	"complex/77080108",	"_key"	:	"77080108",	"_rev"	:	"77080108",	"name"	:

"Name/10/170",	"home"	:	[10,	170],	"work"	:	[-10,	-170]	},

		{	"_id"	:	"complex/72230444",	"_key"	:	"72230444",	"_rev"	:	"72230444",	"name"	:

"Name/-10/170",	"home"	:	[-10,	170],	"work"	:	[10,	-170]	},

		{	"_id"	:	"complex/72361516",	"_key"	:	"72361516",	"_rev"	:	"72361516",	"name"	:

"Name/0/-180",	"home"	:	[0,	-180],	"work"	:	[0,	180]	}]

arango>	db.complex.geo("work").near(0,	170).limit(5);

exception	in	file	'/simple-query'	at	1018,5:	a	geo-index	must	be	known

arango>	db.complex.ensureGeoIndex("work");

arango>	db.complex.geo("work").near(0,	170).limit(5).toArray();

[{	"_id"	:	"complex/72427052",	"_key"	:	"72427052",	"_rev"	:	"72427052",	"name"	:

"Name/0/-170",	"home"	:	[0,	-170],	"work"	:	[0,	170]	},

		{	"_id"	:	"complex/72361516",	"_key"	:	"72361516",	"_rev"	:	"72361516",	"name"	:

"Name/0/-180",	"home"	:	[0,	-180],	"work"	:	[0,	180]	},

		{	"_id"	:	"complex/70002220",	"_key"	:	"70002220",	"_rev"	:	"70002220",	"name"	:

"Name/-10/-170",	"home"	:	[-10,	-170],	"work"	:	[10,	170]	},

		{	"_id"	:	"complex/74851884",	"_key"	:	"74851884",	"_rev"	:	"74851884",	"name"	:

"Name/10/-170",	"home"	:	[10,	-170],	"work"	:	[-10,	170]	},

		{	"_id"	:	"complex/74720812",	"_key"	:	"74720812",	"_rev"	:	"74720812",	"name"	:

"Name/0/180",	"home"	:	[0,	180],	"work"	:	[0,	-180]	}]

ArangoDB allows to run queries on text contained in document attributes. To use this, a
fulltext index must be defined for the attribute of the collection that contains the text.
Creating the index will parse the text in the specified attribute for all documents of the
collection. Only documents will be indexed that contain a textual value in the indexed
attribute. For such documents, the text value will be parsed, and the individual words will
be inserted into the fulltext index.

When a fulltext index exists, it can be queried using a fulltext query.

Fulltext 	collection.FULLTEXT(index-handle,	query)	

The FULLTEXT operator performs a fulltext search using the specified index and the
specified query.

query must contain a comma-separated list of words to look for. Each word can optionally
be prefixed with one of the following command literals:

prefix: perform a prefix-search for the word following
substring: perform substring-matching for the word following. This option is only
supported for fulltext indexes that have been created with the indexSubstrings option
complete: only match the complete following word (this is the default)

Examples

arangosh>	db.emails.FULLTEXT("emails/1632537",	"word");

TypeError:	Cannot	call	method	'FULLTEXT'	of	undefined

Fulltext Syntax:

In the simplest form, a fulltext query contains just the sought word. If multiple search
words are given in a query, they should be separated by commas. All search words will
be combined with a logical AND by default, and only such documents will be returned
that contain all search words. This default behavior can be changed by providing the
extra control characters in the fulltext query, which are:

+: logical AND (intersection)
|: logical OR (union)

Fulltext queries

-: negation (exclusion)

Examples:

"banana": searches for documents containing "banana"
"banana,apple": searches for documents containing both "banana" AND "apple"
"banana,|orange": searches for documents containing either "banana" OR "orange"
OR both
"banana,-apple": searches for documents that contains "banana" but NOT "apple".

Logical operators are evaluated from left to right.

Each search word can optionally be prefixed with complete: or prefix:, with complete:
being the default. This allows searching for complete words or for word prefixes. Suffix
searches or any other forms are partial-word matching are currently not supported.

Examples:

"complete:banana": searches for documents containing the exact word "banana"
"prefix:head": searches for documents with words that start with prefix "head"
"prefix:head,banana": searches for documents contain words starting with prefix
"head" and that also contain the exact word "banana".

Complete match and prefix search options can be combined with the logical operators.

Please note that only words with a minimum length will get indexed. This minimum length
can be defined when creating the fulltext index. For words tokenisation, the libicu text
boundary analysis is used, which takes into account the default as defined at server
startup (--server.default-language startup option). Generally, the word boundary analysis
will filter out punctuation but will not do much more.

Especially no Word normalization, stemming, or similarity analysis will be performed
when indexing or searching. If any of these features is required, it is suggested that the
user does the text normalization on the client side, and provides for each document an
extra attribute containing just a comma-separated list of normalized words. This attribute
can then be indexed with a fulltext index, and the user can send fulltext queries for this
index, with the fulltext queries also containing the stemmed or normalized versions of
words as required by the user.

If, for example, you display the result of a user search, then you are in general not
interested in the completed result set, but only the first 10 or so documents. Or maybe
the next 10 documents for the second page. In this case, you can the skip and limit
operators. These operators work like LIMIT in MySQL.

skip used together with limit can be used to implement pagination. The skip operator
skips over the first n documents. So, in order to create result pages with 10 result
documents per page, you can use skip(n 10).limit(10)* to access the 10 documents on
the n.th page. This result should be sorted, so that the pagination works in a predicable
way.

Limit

	query.limit(number)	

Limits a result to the first number documents. Specifying a limit of 0 returns no
documents at all. If you do not need a limit, just do not add the limit operator. The limit
must be non-negative.

In general the input to limit should be sorted. Otherwise it will be unclear which
documents are used in the result set.

Examples

arangosh>	db.five.all().toArray();

arangosh>	db.five.all().limit(2).toArray();

show execution results
Skip

	query.skip(number)	

Skips the first number documents. If number is positive, then skip the number of
documents. If number is negative, then the total amount N of documents must be known
and the results starts at position (N + number).

In general the input to limit should be sorted. Otherwise it will be unclear which

Pagination

documents are used in the result set.

Examples

arangosh>	db.five.all().toArray();

arangosh>	db.five.all().skip(3).toArray();

show execution results

Has Next

	cursor.hasNext()	

The hasNext operator returns true, then the cursor still has documents. In this case the
next document can be accessed using the next operator, which will advance the cursor.

Examples

arangosh>	var	a	=	db.five.all();

arangosh>	while	(a.hasNext())	print(a.next());

show execution results
Next

	cursor.next()	

If the hasNext operator returns true, then the underlying cursor of the simple query still
has documents. In this case the next document can be accessed using the next operator,
which will advance the underlying cursor. If you use next on an exhausted cursor, then
undefined is returned.

Examples

arangosh>	db.five.all().next();

show execution results
Set Batch size

	cursor.setBatchSize(number)	

Sets the batch size for queries. The batch size determines how many results are at most
transferred from the server to the client in one chunk. Get Batch size

	cursor.getBatchSize()	

Returns the batch size for queries. If the returned value is undefined, the server will

Sequential Access and Cursors

determine a sensible batch size for any following requests. Execute Query

	query.execute(batchSize)	

Executes a simple query. If the optional batchSize value is specified, the server will return
at most batchSize values in one roundtrip. The batchSize cannot be adjusted after the
query is first executed.

Note: There is no need to explicitly call the execute method if another means of fetching
the query results is chosen. The following two approaches lead to the same result:

arangosh>	result	=	db.users.all().toArray();

arangosh>	q	=	db.users.all();	q.execute();	result	=	[];	while	(q.hasNext())	{	result.push(q.next());	}

show execution results
The following two alternatives both use a batchSize and return the same result:

arangosh>	q	=	db.users.all();	q.setBatchSize(20);	q.execute();	while	(q.hasNext())	{	print(q.next());	}

arangosh>	q	=	db.users.all();	q.execute(20);	while	(q.hasNext())	{	print(q.next());	}

show execution results
Dispose

	cursor.dispose()	

If you are no longer interested in any further results, you should call dispose in order to
free any resources associated with the cursor. After calling dispose you can no longer
access the cursor. Count

	cursor.count()	

The count operator counts the number of document in the result set and returns that
number. The count operator ignores any limits and returns the total number of documents
found.

Note: Not all simple queries support counting. In this case null is returned.

	cursor.count(true)	

If the result set was limited by the limit operator or documents were skiped using the skip

operator, the count operator with argument true will use the number of elements in the
final result set - after applying limit and skip.

Note: Not all simple queries support counting. In this case null is returned.

Examples

Ignore any limit:

arangosh>	db.five.all().limit(2).count();

null

Counting any limit or skip:

arangosh>	db.five.all().limit(2).count(true);

2

ArangoDB also allows removing, replacing, and updating documents based on an
example document. Every document in the collection will be compared against the
specified example document and be deleted/replaced/ updated if all attributes match.

These method should be used with caution as they are intended to remove or modify lots
of documents in a collection.

All methods can optionally be restricted to a specific number of operations. However, if a
limit is specific but is less than the number of matches, it will be undefined which of the
matching documents will get removed/modified. Remove by Example, Replace by
Example and Update by Example are described with examples in the subchapter
Collection Methods.

Modification Queries

Starting with version 1.3, ArangoDB provides support for user-definable transactions.

Transactions in ArangoDB are atomic, consistent, isolated, and durable (ACID).

These ACID properties provide the following guarantees:

The atomicity principle makes transactions either complete in their entirety or have
no effect at all.
The consistency principle ensures that no constraints or other invariants will be
violated during or after any transaction.
The isolation property will hide the modifications of a transaction from other
transactions until the transaction commits.
Finally, the durability proposition makes sure that operations from transactions that
have committed will be made persistent. The amount of transaction durability is
configurable in ArangoDB, as is the durability on collection level.

Transactions

ArangoDB transactions are different from transactions in SQL.

In SQL, transactions are started with explicit BEGIN or START TRANSACTION
command. Following any series of data retrieval or modification operations, an SQL
transaction is finished with a COMMIT command, or rolled back with a ROLLBACK
command. There may be client/server communication between the start and the
commit/rollback of an SQL transaction.

In ArangoDB, a transaction is always a server-side operation, and is executed on the
server in one go, without any client interaction. All operations to be executed inside a
transaction need to be known by the server when the transaction is started.

There are no individual BEGIN, COMMIT or ROLLBACK transaction commands in
ArangoDB. Instead, a transaction in ArangoDB is started by providing a description of the
transaction to the db._executeTransaction Javascript function:

db._executeTransaction(description);

This function will then automatically start a transaction, execute all required data retrieval
and/or modification operations, and at the end automatically commit the transaction. If an
error occurs during transaction execution, the transaction is automatically aborted, and all
changes are rolled back.

Execute transaction

	db._executeTransaction(object)	

Executes a server-side transaction, as specified by object.

object must have the following attributes:

collections: a sub-object that defines which collections will be used in the transaction.
collections can have these attributes:

read: a single collection or a list of collections that will be used in the transaction
in read-only mode
write: a single collection or a list of collections that will be used in the transaction
in write or read mode.

Transaction invocation

action: a Javascript function or a string with Javascript code containing all the
instructions to be executed inside the transaction. If the code runs through
successfully, the transaction will be committed at the end. If the code throws an
exception, the transaction will be rolled back and all database operations will be
rolled back.

Additionally, object can have the following optional attributes:

waitForSync: boolean flag indicating whether the transaction is forced to be
synchronous.
lockTimeout: a numeric value that can be used to set a timeout for waiting on
collection locks. If not specified, a default value will be used. Setting lockTimeout to 0
will make ArangoDB not time out waiting for a lock.
params: optional arguments passed to the function specified in action.

Declaration of collections

All collections which are to participate in a transaction need to be declared beforehand.
This is a necessity to ensure proper locking and isolation.

Collections can be used in a transaction in write mode or in read-only mode.

If any data modification operations are to be executed, the collection must be declared for
use in write mode. The write mode allows modifying and reading data from the collection
during the transaction (i.e. the write mode includes the read mode).

Contrary, using a collection in read-only mode will only allow performing read operations
on a collection. Any attempt to write into a collection used in read-only mode will make
the transaction fail.

Collections for a transaction are declared by providing them in the collections attribute of
the object passed to the _executeTransaction function. The collections attribute has the
sub-attributes read and write:

db._executeTransaction({

		collections:	{

				write:	["users",	"logins"],

				read:	["recommendations"]

		}

});

read and write are optional attributes, and only need to be specified if the operations

inside the transactions demand for it.

The contents of read or write can each be lists with collection names or a single collection
name (as a string):

db._executeTransaction({

		collections:	{

				write:	"users",

				read:	"recommendations"

		}

});

Note: It is currently optional to specify collections for read-only access. Even without
specifying them, it is still possible to read from such collections from within a transaction,
but with relaxed isolation. Please refer to Transactions Locking for more details.

!SUBSECTION Declaration of data modification and retrieval operations

All data modification and retrieval operations that are to be executed inside the
transaction need to be specified in a Javascript function, using the action attribute:

db._executeTransaction({

		collections:	{

				write:	"users"

		},

		action:	function	()	{

				//	all	operations	go	here	

		}

});

Any valid Javascript code is allowed inside action but the code may only access the
collections declared in collections. action may be a Javascript function as shown above,
or a string representation of a Javascript function:

db._executeTransaction({

		collections:	{

				write:	"users"

		},

		action:	"function	()	{	doSomething();	}"

});

Please note that any operations specified in action will be executed on the server, in a
separate scope. Variables will be bound late. Accessing any Javascript variables defined

on the client-side or in some other server context from inside a transaction may not work.
Instead, any variables used inside action should be defined inside action itself:

db._executeTransaction({

		collections:	{

				write:	"users"

		},

		action:	function	()	{

				var	db	=	require(...).db;

				db.users.save({	...	});

		}

});

When the code inside the action attribute is executed, the transaction is already started
and all required locks have been acquired. When the code inside the action attribute
finishes, the transaction will automatically commit. There is no explicit commit command.

To make a transaction abort and roll back all changes, an exception needs to be thrown
and not caught inside the transaction:

db._executeTransaction({

		collections:	{

				write:	"users"

		},

		action:	function	()	{

				var	db	=	require("internal").db;

				db.users.save({	_key:	"hello"	});

				//	will	abort	and	roll	back	the	transaction	

				throw	"doh!";

		}

});

There is no explicit abort or roll back command.

As mentioned earlier, a transaction will commit automatically when the end of the action
function is reached and no exception has been thrown. In this case, the user can return
any legal Javascript value from the function:

db._executeTransaction({

		collections:	{

				write:	"users"

		},

		action:	function	()	{

				var	db	=	require("internal").db;

				db.users.save({	_key:	"hello"	});

				//	will	commit	the	transaction	and	return	the	value	"hello"	

				return	"hello";	

		}

});

!SUBSECTION Examples

The first example will write 3 documents into a collection named c1. The c1 collection
needs to be declared in the write attribute of the collections attribute passed to the
executeTransaction function.

The action attribute contains the actual transaction code to be executed. This code
contains all data modification operations (3 in this example).

//	setup

db._create("c1");

db._executeTransaction({

		collections:	{

				write:	["c1"]

		},

		action:	function	()	{

				var	db	=	require("internal").db;

				db.c1.save({	_key:	"key1"	});

				db.c1.save({	_key:	"key2"	});

				db.c1.save({	_key:	"key3"	});

		}

});

				db.c1.count();	//	3

Aborting the transaction by throwing an exception in the action function will revert all
changes, so as if the transaction never happened:

//	setup

db._create("c1");

db._executeTransaction({

		collections:	{

				write:	["c1"]

		},

		action:	function	()	{

				var	db	=	require("internal").db;

				db.c1.save({	_key:	"key1"	});

				db.c1.count();	//	1	

				db.c1.save({	_key:	"key2"	});

				db.c1.count();	//	2	

				throw	"doh!";

		}

});

db.c1.count();	//	0

The automatic rollback is also executed when an internal exception is thrown at some
point during transaction execution:

//	setup	

db._create("c1");

db._executeTransaction({

		collections:	{

				write:	["c1"]

		},

		action:	function	()	{

				var	db	=	require("internal").db;

				db.c1.save({	_key:	"key1"	});

				//	will	throw	duplicate	a	key	error,	not	explicitly	requested	by	the	user	

				db.c1.save({	_key:	"key1"	});		

				//	we'll	never	get	here...	

		}

});

db.c1.count();	//	0

As required by the consistency principle, aborting or rolling back a transaction will also
restore secondary indexes to the state at transaction start. The following example using a
cap constraint should illustrate that:

//	setup	

db._create("c1");

//	limit	the	number	of	documents	to	3	

db.c1.ensureCapConstraint(3);	

//	insert	3	documents	

db.c1.save({	_key:	"key1"	});

db.c1.save({	_key:	"key2"	});

db.c1.save({	_key:	"key3"	});

//	this	will	push	out	key1	

//	we	now	have	these	keys:	["key1",	"key2",	"key3"]	

db.c1.save({	_key:	"key4"	});

db._executeTransaction({

		collections:	{

				write:	["c1"]

		},

		action:	function	()	{

				var	db	=	require("internal").db;

				//	this	will	push	out	key2.	we	now	have	keys	["key3",	"key4",	"key5"]	

				db.c1.save({	_key:	"key5"	});	

				//	will	abort	the	transaction	

				throw	"doh!"

		}

});

//	we	now	have	these	keys	back:	["key2",	"key3",	"key4"]

Cross-collection transactions

There's also the possibility to run a transaction across multiple collections. In this case,
multiple collections need to be declared in the collections attribute, e.g.:

//	setup	

db._create("c1");

db._create("c2");

db._executeTransaction({

		collections:	{

				write:	["c1",	"c2"]

		},

		action:	function	()	{

				var	db	=	require("internal").db;

				db.c1.save({	_key:	"key1"	});

				db.c2.save({	_key:	"key2"	});

		}

});

db.c1.count();	//	1	

db.c2.count();	//	1

Again, throwing an exception from inside the action function will make the transaction
abort and roll back all changes in all collections:

//	setup	

db._create("c1");

db._create("c2");

db._executeTransaction({

		collections:	{

				write:	["c1",	"c2"]

		},

		action:	function	()	{

				var	db	=	require("internal").db;

				for	(var	i	=	0;	i	<	100;	++i)	{

						db.c1.save({	_key:	"key"	+	i	});

						db.c2.save({	_key:	"key"	+	i	});

				}

				db.c1.count();	//	100	

				db.c2.count();	//	100	

				//	abort	

				throw	"doh!"

		}

});

db.c1.count();	//	0	

db.c2.count();	//	0

Arbitrary parameters can be passed to transactions by setting the params attribute when
declaring the transaction. This feature is handy to re-use the same transaction code for
multiple calls but with different parameters.

A basic example:

db._executeTransaction({

		collections:	{	},

		action:	"function	(params)	{	return	params[1];	}",

		params:	[1,	2,	3]

});

The above example will return 2.

Some example that uses collections:

db._executeTransaction({

		collections:	{	

				write:	"users",

				read:	["c1",	"c2"]

		},

		action:	"function	(params)	{	var	db	=	require('internal').db;	var	doc	=	db.c1.document(params['c1Key']);	db.users.save(doc);	doc	=	db.c2.document(params['c2Key']);	db.users.save(doc);}",	

		params:	{	

				c1Key:	"foo",	

				c2Key:	"bar"	

		}

});

Disallowed operations

Some operations are not allowed inside ArangoDB transactions:

creation and deletion of collections (db._create(), db._drop(), db._rename())
creation and deletion of indexes (db.ensure...Index(), db.dropIndex())

If an attempt is made to carry out any of these operations during a transaction, ArangoDB
will abort the transaction with error code 1653 (disallowed operation inside transaction).

Passing parameters to transactions

All collections specified in the collections attribute are locked in the requested mode (read
or write) at transaction start. Locking of multiple collections is performed in alphabetical
order. When a transaction commits or rolls back, all locks are released in reverse order.
The locking order is deterministic to avoid deadlocks.

While locks are held, modifications by other transactions to the collections participating in
the transaction are prevented. A transaction will thus see a consistent view of the
participating collections' data.

Additionally, a transaction will not be interrupted or interleaved with any other ongoing
operations on the same collection. This means each transaction will run in isolation. A
transaction should never see uncommitted or rolled back modifications by other
transactions. Additionally, reads inside a transaction are repeatable.

Note that the above is true only for all collections that are declared in the collections
attribute of the transaction.

There might be situations when declaring all collections a priori is not possible, for
example, because further collections are determined by a dynamic AQL query inside the
transaction. In this case, it would be impossible to know beforehand which collection to
lock, and thus it is legal to not declare collections that will be accessed in the transaction
in read-only mode. Accessing a non-declared collection in read-only mode during a
transaction will add the collection to the transaction lazily, and fetch data from the
collection as usual. However, as the collection ie added lazily, there is no isolation from
other concurrent operations or transactions. Reads from such collections are potentially
non-repeatable.

Examples

db._executeTransaction({

		collections:	{	

				read:	"users"

		},

		action:	function	()	{

				//	execute	an	AQL	query	that	traverses	a	graph	starting	at	a	"users"	vertex.	

				//	it	is	yet	unknown	into	which	other	collections	the	query	will	traverse	

				db._createStatement({	

						query:	"FOR	t	IN	TRAVERSAL(users,	connections,	"users/1234",	"any",	{	})	RETURN	t"

				}).execute().toArray().forEach(function	(d)	{

						//	...

Locking and Isolation

				});

		}

});

This automatic lazy addition of collections to a transaction also introduces the possibility
of deadlocks. Deadlocks may occur if there are concurrent transactions that try to acquire
locks on the same collections lazily.

To recover from a deadlock state, ArangoDB will give up waiting for a collection after a
configurable amount of time. The wait time can be specified per transaction using the
optionallockTimeoutattribute. If no value is specified, some default value will be applied.

If ArangoDB was waited at least lockTimeout seconds during lock acquisition, it will give
up and rollback the transaction. Note that the lockTimeout is used per lock acquisition in
a transaction, and not just once per transaction. There will be at least as many lock
acquisition attempts as there are collections used in the transaction. The total lock wait
time may thus be much higher than the value of lockTimeout.

To avoid both deadlocks and non-repeatable reads, all collections used in a transaction
should always be specified if known in advance.

Transactions are executed in main memory first until there is either a rollback or a
commit. On rollback, no data will be written to disk, but the operations from the
transaction will be reversed in memory.

On commit, all modifications done in the transaction will be written to the collection
datafiles. These writes will be synchronized to disk if any of the modified collections has
the waitForSync property set to true, or if any individual operation in the transaction was
executed with the waitForSync attribute. Additionally, transactions that modify data in
more than one collection are automatically synchronized to disk. This synchronization is
done to not only ensure durability, but to also ensure consistency in case of a server
crash.

That means if you only modify data in a single collection, and that collection has its
waitForSync property set to false, the whole transaction will not be synchronized to disk
instantly, but with a small delay.

There is thus the potential risk of losing data between the commit of the transaction and
the actual (delayed) disk synchronization. This is the same as writing into collections that
have the waitForSync property set to false outside of a transaction. In case of a crash
with waitForSync set to false, the operations performed in the transaction will either be
visible completely or not at all, depending on whether the delayed synchronization had
kicked in or not.

To ensure durability of transactions on a collection that have the waitForSync property
set to false, you can set the waitForSync attribute of the object that is passed to
executeTransaction. This will force a synchronization of the transaction to disk even for
collections that have waitForSync set to false:

db._executeTransaction({

		collections:	{	

				write:	"users"

		},

		waitForSync:	true,

		action:	function	()	{	...	}

});

An alternative is to perform an operation with an explicit sync request in a transaction,
e.g.

Durability

db.users.save({	_key:	"1234"	},	true);	

In this case, the true value will make the whole transaction be synchronized to disk at the
commit.

In any case, ArangoDB will give users the choice of whether or not they want full
durability for single collection transactions. Using the delayed synchronization (i.e.
waitForSync with a value of false) will potentially increase throughput and performance of
transactions, but will introduce the risk of losing the last committed transactions in the
case of a crash.

In contrast, transactions that modify data in more than one collection are automatically
synchronized to disk. This comes at the cost of several disk sync For a multi-collection
transaction, the call to the _executeTransaction function will only return only after the
data of all modified collections has been synchronized to disk and the transaction has
been made fully durable. This not only reduces the risk of losing data in case of a crash
but also ensures consistency after a restart.

In case of a server crash, any multi-collection transactions that were not yet committed or
in preparation to be committed will be rolled back on server restart.

For multi-collection transactions, there will be at least one disk sync operation per
modified collection. Multi-collection transactions thus have a potentially higher cost than
single collection transactions. There is no configuration to turn off disk synchronization for
multi-collection transactions in ArangoDB. The disk sync speed of the system will thus be
the most important factor for the performance of multi-collection transactions.

Transactions in ArangoDB have been designed with particular use cases in mind. They
will be mainly useful for short and small data retrieval and/or modification operations.

The implementation is not optimized for very long-running or very voluminous operations,
and may not be usable for these cases.

One limitation is that a transaction operation information must fit into main memory. The
transaction information consists of record pointers, revision numbers and rollback
information. The actual data modification operations of a transaction are written to the
write-ahead log and do not need to fit entirely into main memory.

Ongoing transactions will also prevent the write-ahead logs from being fully garbage-
collected. Information in the write-ahead log files cannot be written to collection data files
or be discarded while transactions are ongoing.

To ensure progress of the write-ahead log garbage collection, transactions should be
kept as small as possible, and big transactions should be split into multiple smaller
transactions.

Transactions in ArangoDB cannot be nested, i.e. a transaction must not start another
transaction. If an attempt is made to call a transaction from inside a running transaction,
the server will throw error 1651 (nested transactions detected).

It is also disallowed to execute user transaction on some of ArangoDB's own system
collections. This shouldn't be a problem for regular usage as system collections will not
contain user data and there is no need to access them from within a user transaction.

Finally, all collections that may be modified during a transaction must be declared
beforehand, i.e. using the collections attribute of the object passed to the
_executeTransaction function. If any attempt is made to carry out a data modification
operation on a collection that was not declared in the collections attribute, the transaction
will be aborted and ArangoDB will throw error 1652 unregistered collection used in
transaction. It is legal to not declare read-only collections, but this should be avoided if
possible to reduce the probability of deadlocks and non-repeatable reads.

Please refer to Locking and Isolation for more details.

Limitations

Starting with version 2.2 ArangoDB stores all data-modification operation in its write-
ahead log. The write-ahead log is sequence of append-only files containing all the write
operations that were executed on the server.

It is used to run data recovery after a server crash, and can also be used in a replication
setup when slaves need to replay the same sequence of operations as on the master.

By default, each write-ahead logfile is 32 MB big. This size is configurable via the option -
-wal.logfile-size.

When a write-ahead logfile is full, it is set to read-only, and following operations will be
written into the next write-ahead logfile. By default, ArangoDB will reserve some spare
logfiles in the background so switching logfiles should be fast. How many reserve logfiles
ArangoDB will try to keep available in the background can be controlled by the
configuration option --wal.reserve-logfiles.

Data contained in full datafiles will eventually be transferred into the journals or datafiles
of collections. Only the "surviving" documents will be copied over. When all remaining
operations from a write-ahead logfile have been copied over into the journals or datafiles
of the collections, the write-ahead logfile can safely be removed if it is not used for
replication.

Long-running transactions prevent write-ahead logfiles from being fully garbage-collected
because it is unclear whether a transaction will commit or abort. Long-running
transactions can thus block the garbage-collection progress and should therefore be
avoided at all costs.

On a system that acts as a replication master, it is useful to keep a few of the already
collected write-ahead logfiles so replication slaves still can fetch data from them if
required. How many collected logfiles will be kept before they get deleted is configurable
via the option --wal.historic-logfiles.

For all write-ahead log configuration options, please refer to the page Write-ahead log
options.

Write-ahead log

The ArangoDB query language (AQL) can be used to retrieve and modify data that are
stored in ArangoDB. The general workflow when executing a query is as follows:

A client application ships an AQL query to the ArangoDB server. The query text
contains everything ArangoDB needs to compile the result set
ArangoDB will parse the query, execute it and compile the results. If the query is
invalid or cannot be executed, the server will return an error that the client can
process and react to. If the query can be executed successfully, the server will return
the query results (if any) to the client

AQL is mainly a declarative language, meaning that in a query it is expressed what result
should be achieved and not how. AQL aims to be human- readable and therefore uses
keywords from the English language. Another design goal of AQL was client
independency, meaning that the language and syntax are the same for all clients, no
matter what programming language the clients might use. Further design goals of AQL
were the support of complex query patterns and the different data models ArangoDB
offers.

In its purpose, AQL is similar to the Structured Query Language (SQL). AQL supports
reading and modifying collection data, but it doesn't support data-definition operations
such as creating and dropping databases, collections and indexes.

The syntax of AQL queries is different to SQL, even if some keywords overlap.
Nevertheless, AQL should be easy to understand for anyone with an SQL background.

For some example queries, please refer to the page AQL Examples.

Introduction

You can run AQL queries from your application via the HTTP REST API. The full API
description is available at Http Interface for AQL Query Cursor.

You can also run AQL queries from arangosh. To do so, you can use the _query method
of the db object. This will run the specified query in the context of the currently selected
database and return the query results in a cursor. The results of the cursor can be printed
using its toArray method:

arangosh>	db._query("FOR	my	IN	mycollection	RETURN	my._key").toArray();

To pass bind parameters into a query, they can be specified as second argument to the
_query method:

arangosh>	db._query("FOR	c	IN	@@collection	FILTER	c._key	==	@key	RETURN	c._key",	{	

		"@collection":	"mycollection",	

		"key":	"test1"	

}).toArray();

Data-modifying AQL queries do not return a result, so the toArray method will always
return an empty list. To retrieve statistics for a data-modification query, use the getExtra
method:

arangosh>	db._query("FOR	i	IN	1..100	INSERT	{	_key:	CONCAT('test',	TO_STRING(i))	}	INTO	mycollection").getExtra();

{	

		"operations"	:	{

				"executed"	:	100,

				"ignored"	:	0

		}

}

The _query method is a shorthand for creating an ArangoStatement object, executing it
and iterating over the resulting cursor. If more control over the result set iteration is
needed, it is recommended to first create an ArangoStatement object as follows:

How to invoke AQL

arangosh>	stmt	=	db._createStatement({	"query":	"FOR	i	IN	[1,	2]	RETURN	i	*	2"	});

[object	ArangoQueryCursor]

To execute the query, use the execute method of the statement:

arangosh>	c	=	stmt.execute();

[object	ArangoQueryCursor]

This has executed the query. The query results are available in a cursor now. The cursor
can return all its results at once using the toArray method. This is a short-cut that you can
use if you want to access the full result set without iterating over it yourself.

arangosh>	c.toArray();

[2,	4]

Cursors can also be used to iterate over the result set document-by-document. To do so,
use the hasNext and next methods of the cursor:

arangosh>	while	(c.hasNext())	{	require("internal").print(c.next());	}

2

4

Please note that you can iterate over the results of a cursor only once, and that the
cursor will be empty when you have fully iterated over it. To iterate over the results again,
the query needs to be re-executed.

Additionally, the iteration can be done in a forward-only fashion. There is no backwards
iteration or random access to elements in a cursor.

To execute an AQL query using bind parameters, you need to create a statement first
and then bind the parameters to it before execution:

arangosh>	stmt	=	db._createStatement({	"query":	"FOR	i	IN	[@one,	@two]	RETURN	i	*	2"	});

[object	ArangoStatement]

arangosh>	stmt.bind("one",	1);

arangosh>	stmt.bind("two",	2);

arangosh>	c	=	stmt.execute();

[object	ArangoQueryCursor]

The cursor results can then be dumped or iterated over as usual, e.g.:

arangosh>	c.toArray();

[2,	4]

or

arangosh>	while	(c.hasNext())	{	require("internal").print(c.next());	}

2

4

Please note that bind parameters can also be passed into the _createStatement method
directly, making it a bit more convenient:

arangosh>	stmt	=	db._createStatement({	

		"query":	"FOR	i	IN	[@one,	@two]	RETURN	i	*	2",	

		"bindVars":	{	

				"one":	1,	

				"two":	2	

		}	

});

Cursors also optionally provide the total number of results. By default, they do not. To
make the server return the total number of results, you may set the count attribute to true
when creating a statement:

arangosh>	stmt	=	db._createStatement({	"query":	"FOR	i	IN	[1,	2,	3,	4]	RETURN	i",	"count":	true	});

After executing this query, you can use the count method of the cursor to get the number
of total results from the result set:

arangosh>	c	=	stmt.execute();

[object	ArangoQueryCursor]

arangosh>	c.count();

4

Please note that the count method returns nothing if you did not specify the count
attribute when creating the query.

This is intentional so that the server may apply optimizations when executing the query
and construct the result set incrementally. Incremental creating of the result sets would
not be possible if the total number of results needs to be shipped to the client anyway.
Therefore, the client has the choice to specify count and retrieve the total number of
results for a query (and disable potential incremental result set creation on the server), or
to not retrieve the total number of results and allow the server to apply optimizations.

Please note that at the moment the server will always create the full result set for each
query so specifying or omitting the count attribute currently does not have any impact on
query execution. This might change in the future. Future versions of ArangoDB might
create result sets incrementally on the server-side and might be able to apply
optimizations if a result set is not fully fetched by a client.

As of ArangoDB version 2.2, AQL supports the following data-modification operations:

INSERT: insert new documents into a collection
UPDATE: partially update existing documents in a collection
REPLACE: completely replace existing documents in a collection
REMOVE: remove existing documents from a collection

Data-modification operations are normally combined with FOR loops to iterate over a
given list of documents. They can optionally be combined with FILTER statements and
the like.

Let's start with an example that modifies existing documents in a collection "users" that
match some condition:

FOR	u	IN	users

		FILTER	u.status	==	'not	active'

		UPDATE	u	WITH	{	status:	'inactive'	}	IN	users

Note there is no need to combine a data-modification query with other AQL operations
such as FOR and FILTER. For example, the following stripped-down update query will
work, too. It will update one document (with key foo) in collection users:

UPDATE	"foo"	WITH	{	status:	'inactive'	}	IN	users

Now, let's copy the contents of the collection "users" into the collection "backup":

FOR	u	IN	users

		INSERT	u	IN	backup

As a final example, let's find some documents in collection "users" and remove them from
collection "backup". The link between the documents in both collections is establish via
the documents' keys:

FOR	u	IN	users

Data modification queries

		FILTER	u.status	==	'deleted'

		REMOVE	u	IN	backup

Restrictions

The name of the modified collection ("users" and "backup" in the above cases) must be
known to the AQL executor at query-compile time and cannot change at runtime. Using a
bind parameter to specify the collection name is allowed.

Data-modification queries are restricted to modifying data in a single collection per query.
That means a data-modification query cannot modify data in multiple collections with a
single query. It is still possible (and was shown above) to read from one or many
collections and modify data in another with one query.

Transactional Execution

On a single server, data-modification operations are executed transactionally. If a data-
modification operation fails, any changes made by it will be rolled back automatically as if
they never happened.

In a cluster, AQL data-modification queries are currently not executed transactionally.
Additionally, update, replace and remove AQL queries currently require the _key attribute
to be specified for all documents that should be modified or removed, even if a shared
key attribute other than _key was chosen for the collection. This restriction may be
overcome in a future release of ArangoDB.

Query types

An AQL query must either return a result (indicated by usage of the RETURN keyword)
or execute a data-modification operation (indicated by usage of one of the keywords
INSERT, UPDATE, REPLACE or REMOVE). The AQL parser will return an error if it
detects more than one data-modification operation in the same query or if it cannot figure
out if the query is meant to be a data retrieval or a modification operation.

In SQL, the semicolon can be used to indicate the end of a query and to separate
multiple queries. This is not supported in AQL. Using a semicolon to terminate a query
string is not allowed in AQL. Specifying more than one AQL query in a single query string
is disallowed, too.

Whitespace

Whitespace can be used in the query text to increase its readability. However, for the
parser any whitespace (spaces, carriage returns, line feeds, and tab stops) does not
have any special meaning except that it separates individual tokens in the query.
Whitespace within strings or names must be enclosed in quotes in order to be preserved.

Comments

Comments can be embedded at any position in a query. The text contained in the
comment is ignored by the AQL parser. Comments cannot be nested, meaning the
comment text may not contain another comment.

AQL supports two types of comments:

Single line comments: These start with a double forward slash and end at the end of
the line, or the end of the query string (whichever is first).
Multi line comments: These start with a forward slash and asterisk, and end with an
asterisk and a following forward slash. They can span as many lines as necessary.

/*	this	is	a	comment	*/	RETURN	1

/*	these	*/	RETURN	/*	are	*/	1	/*	multiple	*/	+	/*	comments	*/	1				

/*	this	is

			a	multi	line

			comment	*/

//	a	single	line	comment

Language basics

Keywords

On the top level, AQL offers the following operations:

FOR: list iteration
RETURN: results projection
FILTER: results filtering
SORT: result sorting
LIMIT: result slicing
LET: variable assignment
COLLECT: result grouping
INSERT: insertion of new documents
UPDATE: (partial) update of existing documents
REPLACE: replacement of existing documents
REMOVE: removal of existing documents

Each of the above operations can be initiated in a query by using a keyword of the same
name. An AQL query can (and typically does) consist of multiple of the above operations.

An example AQL query might look like this:

FOR	u	IN	users

		FILTER	u.type	==	"newbie"	&&	u.active	==	true

		RETURN	u.name

In this example query, the terms FOR, FILTER, and RETURN initiate the higher-level
operation according to their name. These terms are also keywords, meaning that they
have a special meaning in the language.

For example, the query parser will use the keywords to find out which high-level
operations to execute. That also means keywords can only be used at certain locations in
a query. This also makes all keywords reserved words that must not be used for other
purposes than they are intended for.

For example, it is not possible to use a keyword as a collection or attribute name. If a
collection or attribute need to have the same name as a keyword, the collection or
attribute name needs to be quoted.

Keywords are case-insensitive, meaning they can be specified in lower, upper, or mixed

case in queries. In this documentation, all keywords are written in upper case to make
them distinguishable from other query parts.

In addition to the higher-level operations keywords, there are other keywords. The current
list of keywords is:

FOR
RETURN
FILTER
SORT
LIMIT
LET
COLLECT
INSERT
UPDATE
REPLACE
REMOVE
WITH
ASC
DESC
IN
INTO
NULL
TRUE
FALSE

Additional keywords might be added in future versions of ArangoDB.

Names

In general, names are used to identify objects (collections, attributes, variables, and
functions) in AQL queries.

The maximum supported length of any name is 64 bytes. Names in AQL are always
case-sensitive.

Keywords must not be used as names. If a reserved keyword should be used as a name,
the name must be enclosed in backticks. Enclosing a name in backticks allows using
otherwise-reserved keywords as names. An example for this is:

FOR	f	IN	`filter`	

		RETURN	f.`sort`

Due to the backticks, filter and sort are interpreted as names and not as keywords here.

Collection names

Collection names can be used in queries as they are. If a collection happens to have the
same name as a keyword, the name must be enclosed in backticks.

Please refer to the Naming Conventions in ArangoDB about collection naming
conventions.

Attribute names

When referring to attributes of documents from a collection, the fully qualified attribute
name must be used. This is because multiple collections with ambiguous attribute names
might be used in a query. To avoid any ambiguity, it is not allowed to refer to an
unqualified attribute name.

Please refer to the Naming Conventions in ArangoDB for more information about the
attribute naming conventions.

FOR	u	IN	users

		FOR	f	IN	friends

FILTER	u.active	==	true	&&	f.active	==	true	&&	u.id	==	f.userId

RETURN	u.name

In the above example, the attribute names active, name, id, and userId are qualified
using the collection names they belong to (u and f respectively).

Variable names

AQL offers the user to assign values to additional variables in a query. All variables that
are assigned a value must have a name that is unique within the context of the query.
Variable names must be different from the names of any collection name used in the
same query.

FOR	u	IN	users

		LET	friends	=	u.friends

		RETURN	{	"name"	:	u.name,	"friends"	:	friends	}

In the above query, users is a collection name, and both u and friends are variable
names. This is because the FOR and LET operations need target variables to store their
intermediate results.

Allowed characters in variable names are the letters a to z (both in lower and upper
case), the numbers 0 to 9 and the underscore (_) symbol. A variable name must not start
with a number. If a variable name starts with the underscore character, it must also
contain at least one letter (a-z or A-Z).

Data types

AQL supports both primitive and compound data types. The following types are available:

Primitive types: Consisting of exactly one value
null: An empty value, also: The absence of a value
bool: Boolean truth value with possible values false and true
number: Signed (real) number
string: UTF-8 encoded text value

Compound types: Consisting of multiple values
list: Sequence of values, referred to by their positions
document: Sequence of values, referred to by their names

Numeric literals

Numeric literals can be integers or real values. They can optionally be signed using the +
or - symbols. The scientific notation is also supported.

1

42

-1

-42

1.23

-99.99

0.1

-4.87e103

All numeric values are treated as 64-bit double-precision values internally. The internal
format used is IEEE 754.

String literals

String literals must be enclosed in single or double quotes. If the used quote character is
to be used itself within the string literal, it must be escaped using the backslash symbol.

Backslash literals themselves also be escaped using a backslash.

"yikes!"

"don't	know"

"this	is	a	\"quoted\"	word"

"this	is	a	longer	string."

"the	path	separator	on	Windows	is	\\"

'yikes!'

'don\'t	know'

'this	is	a	longer	string."

'the	path	separator	on	Windows	is	\\'

All string literals must be UTF-8 encoded. It is currently not possible to use arbitrary
binary data if it is not UTF-8 encoded. A workaround to use binary data is to encode the
data using base64 or other algorithms on the application side before storing, and
decoding it on application side after retrieval.

Lists

AQL supports two compound types:

lists: A composition of unnamed values, each accessible by their positions
documents: A composition of named values, each accessible by their names

The first supported compound type is the list type. Lists are effectively sequences of
(unnamed/anonymous) values. Individual list elements can be accessed by their
positions. The order of elements in a list is important.

A list-declaration starts with the [symbol and ends with the] symbol. A list-declaration
contains zero or many expressions, separated from each other with the , symbol.

In the easiest case, a list is empty and thus looks like:

[]

List elements can be any legal expression values. Nesting of lists is supported.

[1,	2,	3]

[-99,	"yikes!",	[true,	["no"],	[]],	1]

[["fox",	"marshal"]]	

Individual list values can later be accesses by their positions using the [] accessor. The
position of the accessed element must be a numeric value. Positions start at 0. It is also
possible to use negative index values to access list values starting from the end of the
list. This is convenient if the length of the list is unknown and access to elements at the
end of the list is required.

//	access	1st	list	element	(element	start	at	index	0)

u.friends[0]

//	access	3rd	list	element

u.friends[2]

//	access	last	list	element	

u.friends[-1]

//	access	second	last	list	element	

u.friends[-2]

Documents

The other supported compound type is the document type. Documents are a composition
of zero to many attributes. Each attribute is a name/value pair. Document attributes can
be accessed individually by their names.

Document declarations start with the { symbol and end with the } symbol. A document
contains zero to many attribute declarations, separated from each other with the ,
symbol. In the simplest case, a document is empty. Its declaration would then be:

{	}

Each attribute in a document is a name/value pair. Name and value of an attribute are
separated using the : symbol.

The attribute name is mandatory and must be specified as a quoted or unquoted string. If
a keyword is to be used as an attribute name, the name must be quoted.

Any valid expression can be used as an attribute value. That also means nested
documents can be used as attribute values

{	name	:	"Peter"	}

{	"name"	:	"Vanessa",	"age"	:	15	}

{	"name"	:	"John",	likes	:	["Swimming",	"Skiing"],	"address"	:	{	"street"	:	"Cucumber	lane",	"zip"	:	"94242"	}	}

Individual document attributes can later be accesses by their names using the . accessor.
If a non-existing attribute is accessed, the result is null.

u.address.city.name

u.friends[0].name.first

Bind parameters

AQL supports the usage of bind parameters, thus allowing to separate the query text
from literal values used in the query. It is good practice to separate the query text from
the literal values because this will prevent (malicious) injection of keywords and other
collection names into an existing query. This injection would be dangerous because it
might change the meaning of an existing query.

Using bind parameters, the meaning of an existing query cannot be changed. Bind
parameters can be used everywhere in a query where literals can be used.

The syntax for bind parameters is @nameparameter where nameparameter is the actual
parameter name. The bind parameter values need to be passed along with the query
when it is executed, but not as part of the query text itself.

FOR	u	IN	users

		FILTER	u.id	==	@id	&&	u.name	==	@nameparameter

		RETURN	u

Bind parameter names must start with any of the letters a to z (both in lower and upper
case) or a digit (0 to 9), and can be followed by any letter, digit or the underscore symbol.

A special type of bind parameter exists for injecting collection names. This type of bind
parameter has a name prefixed with an additional @ symbol (thus when using the bind
parameter in a query, two @ symbols must be used).

FOR	u	IN	@@collection

		FILTER	u.active	==	true

RETURN	u

Type and value order

When checking for equality or inequality or when determining the sort order of values,
AQL uses a deterministic algorithm that takes both the data types and the actual values
into account.

The compared operands are first compared by their data types, and only by their data
values if the operands have the same data types.

The following type order is used when comparing data types:

null	<	bool		<	number	<	string	<	list	<	document

This means null is the smallest type in AQL and document is the type with the highest
order. If the compared operands have a different type, then the comparison result is
determined and the comparison is finished.

For example, the boolean true value will always be less than any numeric or string value,
any list (even an empty list) or any document. Additionally, any string value (even an
empty string) will always be greater than any numeric value, a boolean value, true or
false.

null	<	false

null	<	true

null	<	0

null	<	''

null	<	'	'

null	<	'0'

null	<	'abc'

null	<	[]

null	<	{	}

false	<	true

false	<	0

false	<	''

false	<	'	'

false	<	'0'

false	<	'abc'

false	<	[]

false	<	{	}

true	<	0

true	<	''

true	<	'	'

true	<	'0'

true	<	'abc'

true	<	[]

true	<	{	}

0	<	''

0	<	'	'

0	<	'0'

0	<	'abc'

0	<	[]

0	<	{	}

''	<	'	'

''	<	'0'

''	<	'abc'

''	<	[]

''	<	{	}

[]	<	{	}

If the two compared operands have the same data types, then the operands values are
compared. For the primitive types (null, boolean, number, and string), the result is defined
as follows:

null: null is equal to null
boolean: false is less than true
number: numeric values are ordered by their cardinal value
string: string values are ordered using a localized comparison,

Note: unlike in SQL, null can be compared to any value, including null itself, without the
result being converted into null automatically.

For compound, types the following special rules are applied:

Two list values are compared by comparing their individual elements position by position,
starting at the first element. For each position, the element types are compared first. If the
types are not equal, the comparison result is determined, and the comparison is finished.
If the types are equal, then the values of the two elements are compared. If one of the
lists is finished and the other list still has an element at a compared position, then null will
be used as the element value of the fully traversed list.

If a list element is itself a compound value (a list or a document), then the comparison
algorithm will check the element's sub values recursively. The element's sub elements
are compared recursively.

[]	<	[0]

[1]	<	[2]

[1,	2]	<	[2]

[99,	99]	<	[100]

[false]	<	[true]

[false,	1]	<	[false,	'']

Two documents operands are compared by checking attribute names and value. The
attribute names are compared first. Before attribute names are compared, a combined list
of all attribute names from both operands is created and sorted lexicographically. This
means that the order in which attributes are declared in a document is not relevant when
comparing two documents.

The combined and sorted list of attribute names is then traversed, and the respective
attributes from the two compared operands are then looked up. If one of the documents
does not have an attribute with the sought name, its attribute value is considered to be
null. Finally, the attribute value of both documents is compared using the before
mentioned data type and value comparison. The comparisons are performed for all
document attributes until there is an unambiguous comparison result. If an unambiguous
comparison result is found, the comparison is finished. If there is no unambiguous
comparison result, the two compared documents are considered equal.

{	}	<	{	"a"	:	1	}

{	}	<	{	"a"	:	null	}

{	"a"	:	1	}	<	{	"a"	:	2	}

{	"b"	:	1	}	<	{	"a"	:	0	}

{	"a"	:	{	"c"	:	true	}	}	<	{	"a"	:	{	"c"	:	0	}	}

{	"a"	:	{	"c"	:	true,	"a"	:	0	}	}	<	{	"a"	:	{	"c"	:	false,	"a"	:	1	}	}

{	"a"	:	1,	"b"	:	2	}	==	{	"b"	:	2,	"a"	:	1	}

Accessing data from collections

Collection data can be accessed by specifying a collection name in a query. A collection
can be understood as a list of documents, and that is how they are treated in AQL.
Documents from collections are normally accessing using the FOR keyword. Note that
when iterating over documents from a collection, the order of documents is undefined. To
traverse documents in an explicit and deterministic order, the SORT keyword should be
used in addition.

Data in collections is stored in documents, with each document potentially having
different attributes than other documents. This is true even for documents of the same
collection.

It is therefore quite normal to encounter documents that do not have some or all of the
attributes that are queried in an AQL query. In this case, the non-existing attributes in the
document will be treated as if they would exist with a value of null. That means that
comparing a document attribute to null will return true if the document has the particular
attribute and the attribute has a value of null, or that the document does not have the

particular attribute at all.

For example, the following query will return all documents from the collection users that
have a value of null in the attribute name, plus all documents from users that do not have
the name attribute at all:

FOR	u	IN	users

		FILTER	u.name	==	null

		RETURN	u

Furthermore, null is less than any other value (excluding null itself). That means
documents with non-existing attributes might be included in the result when comparing
attribute values with the less than or less equal operators.

For example, the following query will return all documents from the collection users that
have an attribute age with a value less than 39, but also all documents from the collection
that do not have the attribute age at all.

FOR	u	IN	users

		FILTER	u.age	<	39

		RETURN	u

This behavior should always be taken into account when writing queries.

AQL supports functions to allow more complex computations. Functions can be called at
any query position where an expression is allowed. The general function call syntax is:

FUNCTIONNAME(arguments)

where FUNCTIONNAME is the name of the function to be called, and arguments is a
comma-separated list of function arguments. If a function does not need any arguments,
the argument list can be left empty. However, even if the argument list is empty the
parentheses around it are still mandatory to make function calls distinguishable from
variable names.

Some example function calls:

HAS(user,	"name")

LENGTH(friends)

COLLECTIONS()

In contrast to collection and variable names, function names are case-insensitive, i.e.
LENGTH(foo) and length(foo) are equivalent.

Extending AQL

Since ArangoDB 1.3, it is possible to extend AQL with user-defined functions. These
functions need to be written in Javascript, and be registered before usage in a query.

Please refer to Extending AQL for more details on this.

By default, any function used in an AQL query will be sought in the built-in function
namespace _aql. This is the default namespace that contains all AQL functions that are
shipped with ArangoDB. To refer to a user-defined AQL function, the function name must
be fully qualified to also include the user-defined namespace. The :: symbol is used as
the namespace separator:

MYGROUP::MYFUNC()

MYFUNCTIONS::MATH::RANDOM()

Functions

As all AQL function names, user function names are also case-insensitive.

Type cast functions

As mentioned before, some of the operators expect their operands to have a certain data
type. For example, the logical operators expect their operands to be boolean values, and
the arithmetic operators expect their operands to be numeric values. If an operation is
performed with operands of an unexpected type, the operation will fail with an error. To
avoid such failures, value types can be converted explicitly in a query. This is called type
casting.

In an AQL query, type casts are performed only upon request and not implicitly. This
helps avoiding unexpected results. All type casts have to be performed by invoking a type
cast function. AQL offers several type cast functions for this task. Each of the these
functions takes an operand of any data type and returns a result value of type
corresponding to the function name (e.g. TO_NUMBER() will return a number value):

TO_BOOL(value): Takes an input value of any type and converts it into the
appropriate boolean value as follows:

null is converted to false.
Numbers are converted to true if they are unequal to 0, and to false otherwise.
Strings are converted to true if they are non-empty, and to false otherwise.
Lists are converted to true if they are non-empty, and to false otherwise.
Documents are converted to true if they are non-empty, and to false otherwise.

TO_NUMBER(value): Takes an input value of any type and converts it into a
numeric value as follows:

null, false, lists, and documents are converted to the value 0.
true is converted to 1.
Strings are converted to their numeric equivalent if the full string content is is a
valid number, and to 0 otherwise.

TO_STRING(value): Takes an input value of any type and converts it into a string
value as follows:

null is converted to the string "null"
false is converted to the string "false", true to the string "true"
Numbers, lists and documents are converted to their string equivalents.

TO_LIST(value): Takes an input value of any type and converts it into a list value as
follows:

null is converted to an empty list
Boolean values, numbers and strings are converted to a list containing the
original value as its single element
Documents are converted to a list containing their attribute values as list
elements

Type check functions

AQL also offers functions to check the data type of a value at runtime. The following type
check functions are available. Each of these functions takes an argument of any data
type and returns true if the value has the type that is checked for, and false otherwise.

The following type check functions are available:

IS_NULL(value): Checks whether value is a null value

IS_BOOL(value): Checks whether value is a boolean value

IS_NUMBER(value): Checks whether value is a numeric value

IS_STRING(value): Checks whether value is a string value

IS_LIST(value): Checks whether value is a list value

IS_DOCUMENT(value): Checks whether value is a document value

String functions

For string processing, AQL offers the following functions:

CONCAT(value1, value2, ... valuen): Concatenate the strings passed as in value1 to
valuen. null values are ignored

CONCAT_SEPARATOR(separator, value1, value2, ... valuen): Concatenate the
strings passed as arguments value1 to valuen using the separator string. null values
are ignored

CHAR_LENGTH(value): Return the number of characters in value. This is a
synonym for LENGTH(value)*

LOWER(value): Lower-case value

UPPER(value): Upper-case value

SUBSTRING(value, offset, length): Return a substring of value, starting at offset and
with a maximum length of length characters. Offsets start at position 0

LEFT(value, LENGTH): Returns the LENGTH leftmost characters of the string value

RIGHT(value, LENGTH): Returns the LENGTH rightmost characters of the string
value

TRIM(value, type): Returns the string value with whitespace stripped from the start
and/or end. The optional type parameter specifies from which parts of the string the
whitespace is stripped:

type 0 will strip whitespace from the start and end of the string
type 1 will strip whitespace from the start of the string only
type 2 will strip whitespace from the end of the string only

REVERSE(value): Returns the reverse of the string value

CONTAINS(text, search, return-index): Checks whether the string search is
contained in the string text. By default, this function returns true if search is
contained in text, and false otherwise. By passing true as the third function
parameter return-index, the function will return the position of the first occurrence of
search within text, starting at offset 0, or -1 if search is not contained in text.

The string matching performed by CONTAINS is case-sensitive.

LIKE(text, search, case-insensitive): Checks whether the pattern search is contained
in the string text, using wildcard matching. Returns true if the pattern is contained in
text, and false otherwise. The pattern string can contain the wildcard characters %
(meaning any sequence of characters) and _ (any single character).

The string matching performed by LIKE is case-sensitive by default, but by passing
true as the third parameter, the matching will be case-insensitive.

The value for search cannot be a variable or a document attribute. The actual value
must be present at query parse time already.

Numeric functions

AQL offers some numeric functions for calculations. The following functions are
supported:

FLOOR(value): Returns the integer closest but not greater to value

CEIL(value): Returns the integer closest but not less than value

ROUND(value): Returns the integer closest to value

ABS(value): Returns the absolute part of value

SQRT(value): Returns the square root of value

RAND(): Returns a pseudo-random number between 0 and 1

Date functions

AQL offers functionality to work with dates. Dates are no datatypes of their own in AQL
(neither they are in JSON, which is often used as a format to ship data into and out of
ArangoDB). Instead, dates in AQL are internally represented by either numbers
(timestamps) or strings. The date functions in AQL provide mechanisms to convert from a
numeric timestamp to a string representation and vice versa.

There are two date functions in AQL to create dates for further use:

DATE_TIMESTAMP(date): Creates a UTC timestamp value from date. The return
value has millisecond precision. To convert the return value to seconds, divide it by
1000.

DATE_TIMESTAMP(year, month, day, hour, minute, second, millisecond): Same as
before, but allows specifying the individual date components separately. All
parameters after day are optional.

DATE_ISO8601(date): Returns an ISO8601 date time string from date. The date
time string will always use UTC time, indicated by the Z at its end.

DATE_ISO8601(year, month, day, hour, minute, second, millisecond): same as
before, but allows specifying the individual date components separately. All
parameters after day are optional.

These two above date functions accept the following input values:

numeric timestamps, indicating the number of milliseconds elapsed since the UNIX
epoch (i.e. January 1st 1970 00:00:00 UTC). An example timestamp value is
1399472349522, which translates to 2014-05-07T14:19:09.522Z.

date time strings in formats YYYY-MM-DDTHH:MM:SS.MMM, YYYY-MM-DD

HH:MM:SS.MMM, or YYYY-MM-DD Milliseconds are always optional. A timezone
difference may optionally be added at the end of the string, with the hours and
minutes that need to be added or subtracted to the date time value. For example,
2014-05-07T14:19:09+01:00 can be used to specify a one hour offset, and 2014-05-
07T14:19:09+07:30 can be specified for seven and half hours offset. Negative
offsets are also possible. Alternatively to an offset, a Z can be used to indicate UTC /
Zulu time.

An example value is 2014-05-07T14:19:09.522Z meaning May 7th 2014, 14:19:09
and 522 milliseconds, UTC / Zulu time. Another example value without time
component is 2014-05-07Z.

Please note that if no timezone offset is specified in a datestring, ArangoDB will
assume UTC time automatically. This is done to ensure portability of queries across
servers with different timezone settings, and because timestamps will always be
UTC-based.

individual date components as separate function arguments, in the following order:

year
month
day
hour
minute
second
millisecond

All components following day are optional and can be omitted. Note that no timezone
offsets can be specified when using separate date components, and UTC / Zulu time
will be used.

The following calls to DATE_TIMESTAMP are equivalent and will all return
1399472349522:

DATE_TIMESTAMP("2014-05-07T14:19:09.522")

DATE_TIMESTAMP("2014-05-07T14:19:09.522Z")

DATE_TIMESTAMP("2014-05-07	14:19:09.522")

DATE_TIMESTAMP("2014-05-07	14:19:09.522Z")

DATE_TIMESTAMP(2014,	5,	7,	14,	19,	9,	522)

DATE_TIMESTAMP(1399472349522)

The same is true for calls to DATE_ISO8601 that also accepts variable input formats:

DATE_ISO8601("2014-05-07T14:19:09.522Z")

DATE_ISO8601("2014-05-07	14:19:09.522Z")

DATE_ISO8601(2014,	5,	7,	14,	19,	9,	522)

DATE_ISO8601(1399472349522)

The above functions are all equivalent and will return "2014-05-07T14:19:09.522Z".

The following date functions can be used with dates created by DATE_TIMESTAMP and
DATE_ISO8601:

DATE_DAYOFWEEK(date): Returns the weekday number of date. The return values
have the following meanings:

0: Sunday
1: Monday
2: Tuesday
3: Wednesday
4: Thursday
5: Friday
6: Saturday

DATE_YEAR(date): Returns the year part of date as a number.

DATE_MONTH(date): Returns the month part of date as a number.

DATE_DAY(date): Returns the day part of date as a number.

DATE_HOUR(date): Returns the hour part of date as a number.

DATE_MINUTE(date): Returns the minute part of date as a number.

DATE_SECOND(date): Returns the seconds part of date as a number.

DATE_MILLISECOND(date): Returns the milliseconds part of date as a number.

The following other date functions are also available:

DATE_NOW(): Returns the current time as a timestamp. The return value has
millisecond precision. To convert the return value to seconds, divide it by 1000.

Note that this function is evaluated on every invocation and may return different
values when invoked multiple times in the same query.

List functions

AQL supports the following functions to operate on list values:

LENGTH(list): Returns the length (number of list elements) of list. If list is a
document, returns the number of attribute keys of the document, regardless of their
values.

FLATTEN(list), depth): Turns a list of lists into a flat list. All list elements in list will be
expanded in the result list. Non-list elements are added as they are. The function will
recurse into sub-lists up to a depth of depth. depth has a default value of 1.

Examples

		FLATTEN([1,	2,	[3,	4],	5,	[6,	7],	[8,	[9,	10]])

will produce:

		[1,	2,	3,	4,	5,	6,	7,	8,	[9,	10]]

To fully flatten the list, use a depth of 2:

		FLATTEN([1,	2,	[3,	4],	5,	[6,	7],	[8,	[9,	10]],	2)

This will produce:

		[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

MIN(list): Returns the smallest element of list. null values are ignored. If the list is
empty or only null values are contained in the list, the function will return null.

MAX(list): Returns the greatest element of list. null values are ignored. If the list is
empty or only null values are contained in the list, the function will return null.

AVERAGE(list): Returns the average (arithmetic mean) of the values in list. This
requires the elements in list to be numbers. null values are ignored. If the list is
empty or only null values are contained in the list, the function will return null.

SUM(list): Returns the sum of the values in list. This requires the elements in list to
be numbers. null values are ignored.

MEDIAN(list): Returns the median value of the values in list. This requires the
elements in list to be numbers. null values are ignored. If the list is empty or only null
values are contained in the list, the function will return null.

VARIANCE_POPULATION(list): Returns the population variance of the values in list.
This requires the elements in list to be numbers. null values are ignored. If the list is
empty or only null values are contained in the list, the function will return null.

VARIANCE_SAMPLE(list): Returns the sample variance of the values in list. This
requires the elements in list to be numbers. null values are ignored. If the list is
empty or only null values are contained in the list, the function will return null.

STDDEV_POPULATION(list): Returns the population standard deviation of the
values in list. This requires the elements in list to be numbers. null values are
ignored. If the list is empty or only null values are contained in the list, the function
will return null.

STDDEV_SAMPLE(list): Returns the sample standard deviation of the values in list.
This requires the elements in list to be numbers. null values are ignored. If the list is
empty or only null values are contained in the list, the function will return null.

REVERSE(list): Returns the elements in list in reversed order.

FIRST(list): Returns the first element in list or null if the list is empty.

LAST(list): Returns the last element in list or null if the list is empty.

NTH(list, position): Returns the list element at position position. Positions start at 0. If
position is negative or beyond the upper bound of the list specified by list, then null
will be returned.

POSITION(list, search, return-index): Returns the position of the element search in
list list. Positions start at 0. If the element is not found, then -1 is returned. If return-
index is false, then instead of the position only true or false are returned, depending
on whether the sought element is contained in the list.

SLICE(list, start, length): Extracts a slice of the list specified by list. The extraction
will start at list element with position start. Positions start at 0. Up to length elements
will be extracted. If length is not specified, all list elements starting at start will be

returned. If start is negative, it can be used to indicate positions from the end of the
list.

Examples

		SLICE([1,	2,	3,	4,	5],	0,	1)

will return [1]

		SLICE([1,	2,	3,	4,	5],	1,	2)

will return [2, 3]

		SLICE([1,	2,	3,	4,	5],	3)	

will return [4, 5]

		SLICE([1,	2,	3,	4,	5],	1,	-1)	

will return [2, 3, 4]

		SLICE([1,	2,	3,	4,	5],	0,	-2)

will return [1, 2, 3]

UNIQUE(list): Returns all unique elements in list. To determine uniqueness, the
function will use the comparison order. Calling this function might return the unique
elements in any order.

UNION(list1, list2, ...): Returns the union of all lists specified. The function expects at
least two list values as its arguments. The result is a list of values in an undefined
order.

Note: No duplicates will be removed. In order to remove duplicates, please use
either UNION_DISTINCT function or apply the UNIQUE on the result of union.

Examples

		RETURN	UNION(

				[1,	2,	3],

				[1,	2]

)

will produce:

		[[1,	2,	3,	1,	2]]

with duplicate removal:

		RETURN	UNIQUE(

				UNION(

						[1,	2,	3],

						[1,	2]

)

)

will produce:

		[[1,	2,	3]]

UNION_DISTINCT(list1, list2, ...): Returns the union of distinct values of all lists
specified. The function expects at least two list values as its arguments. The result is
a list of values in an undefined order.

MINUS(list1, list2, ...): Returns the difference of all lists specified. The function
expects at least two list values as its arguments. The result is a list of values that
occur in the first list but not in any of the subsequent lists. The order of the result list
is undefined and should not be relied on. Note: duplicates will be removed.

INTERSECTION(list1, list2, ...): Returns the intersection of all lists specified. The
function expects at least two list values as its arguments. The result is a list of values
that occur in all arguments. The order of the result list is undefined and should not be
relied on.

Note: Duplicates will be removed.

Apart from these functions, AQL also offers several language constructs (e.g. FOR,
SORT, LIMIT, COLLECT) to operate on lists.

Document functions

AQL supports the following functions to operate on document values:

MATCHES(document, examples, return-index): Compares the document document
against each example document provided in the list examples. If document matches
one of the examples, true is returned, and if there is no match false will be returned.
The default return value type can be changed by passing true as the third function
parameter return-index. Setting this flag will return the index of the example that
matched (starting at offset 0), or -1 if there was no match.

The comparisons will be started with the first example. All attributes of the example
will be compared against the attributes of document. If all attributes match, the
comparison stops and the result is returned. If there is a mismatch, the function will
continue the comparison with the next example until there are no more examples
left.

The examples must be a list of 1..n example documents, with any number of
attributes each. Note: specifying an empty list of examples is not allowed.

@EXAMPLE

RETURN	MATCHES(

		{	"test"	:	1	},	[

				{	"test"	:	1,	"foo"	:	"bar"	},	

				{	"foo"	:	1	},	

				{	"test	:	1	}	

],	true)

This will return 2, because the third example matches, and because the return-index
flag is set to true.

MERGE(document1, document2, ... documentn): Merges the documents in
document1 to documentn* into a single document. If document attribute keys are
ambiguous, the merged result will contain the values of the documents contained
later in the argument list.

For example, two documents with distinct attribute names can easily be merged into
one:

RETURN	MERGE(

		{	"user1"	:	{	"name"	:	"J"	}	},	

		{	"user2"	:	{	"name"	:	"T"	}	}

)

[

		{	"user1"	:	{	"name"	:	"J"	},	

"user2"	:	{	"name"	:	"T"	}	}	

]

When merging documents with identical attribute names, the attribute values of the
latter documents will be used in the end result:

RETURN	MERGE(

		{	"users"	:	{	"name"	:	"J"	}	},	

		{	"users"	:	{	"name"	:	"T"	}	}

)

[

		{	"users"	:	{	"name"	:	"T"	}	}	

]

Please note that merging will only be done for top-level attributes. If you wish to
merge sub-attributes, you should consider using MERGE_RECURSIVE instead.

MERGE_RECURSIVE(document1, document2, ... documentn): Recursively merges
the documents in document1 to documentn into a single document. If document
attribute keys are ambiguous, the merged result will contain the values of the
documents contained later in the argument list.

For example, two documents with distinct attribute names can easily be merged into
one:

RETURN	MERGE_RECURSIVE(

		{	"user-1"	:	{	"name"	:	"J",	"livesIn"	:	{	"city"	:	"LA"	}	}	},	

		{	"user-1"	:	{	"age"	:	42,	"livesIn"	:	{	"state"	:	"CA"	}	}	}

)

[

		{	"user-1"	:	{	"name"	:	"J",	"livesIn"	:	{	"city"	:	"LA",	"state"	:	"CA"	},	"age"	:	42	}	}	

]

TRANSLATE(value, lookup, defaultValue): Looks up the value value in the lookup

document. If value is a key in lookup, then value will be replaced with the lookup
value found. If value is not present in lookup, then defaultValue will be returned if
specified. If no defaultValue is specified, value will be returned:

RETURN	TRANSLATE("FR",	{	US:	"United	States",	UK:	"United	Kingdom",	FR:	"France"	})

"France"

RETURN	TRANSLATE(42,	{	foo:	"bar",	bar:	"baz"	},	"not	found!")

"not	found!"

HAS(document, attributename): Returns true if document has an attribute named
attributename, and false otherwise.

ATTRIBUTES(document, removeInternal, sort): Returns the attribute names of the
document document as a list. If removeInternal is set to true, then all internal
attributes (such as _id, _key etc.) are removed from the result. If sort is set to true,
then the attribute names in the result will be sorted. Otherwise they will be returned
in any order.

UNSET(document, attributename, ...): Removes the attributes attributename (can be
one or many) from document. All other attributes will be preserved. Multiple attribute
names can be specified by either passing multiple individual string argument names,
or by passing a list of attribute names:

RETURN	UNSET(doc,	'_id',	'_key',	['foo',	'bar'])

KEEP(document, attributename, ...): Keeps only the attributes attributename (can be
one or many) from document. All other attributes will be removed from the result.
Multiple attribute names can be specified by either passing multiple individual string
argument names, or by passing a list of attribute names:

RETURN	KEEP(doc,	'firstname',	'name',	'likes')

PARSE_IDENTIFIER(document-handle): Parses the document handle specified in
document-handle and returns a the handle's individual parts a separate attributes.
This function can be used to easily determine the collection name and key from a

given document. The document-handle can either be a regular document from a
collection, or a document identifier string (e.g. _users/1234). Passing either a non-
string or a non-document or a document without an _id attribute will result in an
error.

RETURN	PARSE_IDENTIFIER('_users/my-user')

[

		{	"collection"	:	"_users",	"key"	:	"my-user"	}	

]

RETURN	PARSE_IDENTIFIER({	"_id"	:	"mycollection/mykey",	"value"	:	"some	value"	})

[

		{	"collection"	:	"mycollection",	"key"	:	"mykey"	}	

]

Geo functions

AQL offers the following functions to filter data based on geo indexes:

NEAR(collection, latitude, longitude, limit, distancename): Returns at most limit
documents from collection collection that are near latitude and longitude. The result
contains at most limit documents, returned in any order. If more than limit documents
qualify, it is undefined which of the qualifying documents are returned. Optionally, the
distances between the specified coordinate (latitude and longitude) and the
document coordinates can be returned as well. To make use of that, an attribute
name for the distance result has to be specified in the distancename argument. The
result documents will contain the distance value in an attribute of that name. limit is
an optional parameter since ArangoDB 1.3. If it is not specified or null, a limit value
of 100 will be applied.

WITHIN(collection, latitude, longitude, radius, distancename): Returns all documents
from collection collection that are within a radius of radius around that specified
coordinate (latitude and longitude). The order in which the result documents are
returned is undefined. Optionally, the distance between the coordinate and the
document coordinates can be returned as well. To make use of that, an attribute
name for the distance result has to be specified in the distancename argument. The
result documents will contain the distance value in an attribute of that name.

Note: these functions require the collection collection to have at least one geo index. If no
geo index can be found, calling this function will fail with an error.

Fulltext functions

AQL offers the following functions to filter data based on fulltext indexes:

FULLTEXT(collection, attribute, query): Returns all documents from collection
collection for which the attribute attribute matches the fulltext query query. query is a
comma-separated list of sought words (or prefixes of sought words). To distinguish
between prefix searches and complete-match searches, each word can optionally be
prefixed with either the prefix: or complete: qualifier. Different qualifiers can be mixed
in the same query. Not specifying a qualifier for a search word will implicitly execute
a complete-match search for the given word:

FULLTEXT(emails, "body", "banana") Will look for the word banana in the
attribute body of the collection collection.

FULLTEXT(emails, "body", "banana,orange") Will look for boths the words
banana and orange in the mentioned attribute. Only those documents will be
returned that contain both words.

FULLTEXT(emails, "body", "prefix:head") Will look for documents that contain
any words starting with the prefix head.

FULLTEXT(emails, "body", "prefix:head,complete:aspirin") Will look for all
documents that contain a word starting with the prefix head and that also
contain the (complete) word aspirin. Note: specifying complete is optional here.

FULLTEXT(emails, "body", "prefix:cent,prefix:subst") Will look for all documents
that contain a word starting with the prefix cent and that also contain a word
starting with the prefix subst.

If multiple search words (or prefixes) are given, then by default the results will be
AND-combined, meaning only the logical intersection of all searches will be returned.
It is also possible to combine partial results with a logical OR, and with a logical
NOT:

FULLTEXT(emails, "body", "+this,+text,+document") Will return all documents
that contain all the mentioned words. Note: specifying the + symbols is optional
here.

FULLTEXT(emails, "body", "banana,|apple") Will return all documents that
contain either (or both) words banana or apple.

FULLTEXT(emails, "body", "banana,-apple") Will return all documents that
contain the word banana but do not contain the word apple.

FULLTEXT(emails, "body", "banana,pear,-cranberry") Will return all documents
that contain both the words banana and pear but do not contain the word
cranberry.

No precedence of logical operators will be honored in a fulltext query. The query will
simply be evaluated from left to right.

Note: the FULLTEXT function requires the collection collection to have a fulltext index on
attribute. If no fulltext index is available, this function will fail with an error.

Graph functions

AQL has the following functions to traverse graphs:

If you have created a graph in the general-graph module you may want to use Graph
operations instead.

PATHS(vertexcollection, edgecollection, direction, followcycles): returns a list of
paths through the graph defined by the nodes in the collection vertexcollection and
edges in the collection edgecollection. For each vertex in vertexcollection, it will
determine the paths through the graph depending on the value of direction:

"outbound": Follow all paths that start at the current vertex and lead to another
vertex
"inbound": Follow all paths that lead from another vertex to the current vertex
"any": Combination of "outbound" and "inbound" The default value for direction
is "outbound". If followcycles is true, cyclic paths will be followed as well. This is
turned off by default.

The result of the function is a list of paths. Paths of length 0 will also be returned.
Each path is a document consisting of the following attributes:

vertices: list of vertices visited along the path
edges: list of edges visited along the path (might be empty)
source: start vertex of path
destination: destination vertex of path

Examples

		PATHS(friends,	friendrelations,	"outbound",	false)

		FOR	p	IN	PATHS(friends,	friendrelations,	"outbound")	

				FILTER	p.source._id	==	"123456/123456"	&&	LENGTH(p.edges)	==	2

				RETURN	p.vertices[*].name

If you have created a graph in the general-graph module you may want to use Graph
operations instead.

TRAVERSAL(vertexcollection, edgecollection, startVertex, direction, options):
Traverses the graph described by vertexcollection and edgecollection, starting at the
vertex identified by id startVertex. Vertex connectivity is specified by the direction
parameter:

"outbound": Vertices are connected in _from to _to order
"inbound": Vertices are connected in _to to _from order
"any": Vertices are connected in both _to to _from and in _from to _to order

Additional options for the traversal can be provided via the options document:

strategy: Defines the traversal strategy. Possible values are depthfirst and
breadthfirst. Defaults to depthfirst
order: Defines the traversal order: Possible values are preorder and postorder.
Defaults to preorder
itemOrder: Defines the level item order. Can be forward or backward. Defaults
to forward
minDepth: Minimum path depths for vertices to be included. This can be used to
include only vertices in the result that are found after a certain minimum depth.
Defaults to 0
maxIterations: Maximum number of iterations in each traversal. This number
can be set to prevent endless loops in traversal of cyclic graphs. When a
traversal performs as many iterations as the maxIterations value, the traversal
will abort with an error. If maxIterations is not set, a server-defined value may be
used
maxDepth: Maximum path depth for sub-edges expansion. This can be used to
limit the depth of the traversal to a sensible amount. This should especially be
used for big graphs to limit the traversal to some sensible amount, and for
graphs containing cycles to prevent infinite traversals. The maximum depth
defaults to 256, with the chance of this value being non-sensical. For several
graphs, a much lower maximum depth is sensible, whereas for other, more list-
oriented graphs a higher depth should be used
paths: If true, the paths encountered during the traversal will also be returned

along with each traversed vertex. If false, only the encountered vertices will be
returned.
uniqueness: An optional document with the following attributes:

vertices:
none: No vertex uniqueness is enforced
global: A vertex may be visited at most once. This is the default.
path: A vertex is visited only if not already contained in the current
traversal path

edges:
none: No edge uniqueness is enforced
global: An edge may be visited at most once. This is the default
path: An edge is visited only if not already contained in the current
traversal path

followEdges: An optional list of example edge documents that the traversal will
expand into. If no examples are given, the traversal will follow all edges. If one
or many edge examples are given, the traversal will only follow an edge if it
matches at least one of the specified examples. followEdges can also be a
string with the name of an AQL user-defined function that should be responsible
for checking if an edge should be followed. In this case, the AQL function will is
expected to have the following signature:

function	(config,	vertex,	edge,	path)

The function is expected to return a boolean value. If it returns true, the edge will
be followed. If false is returned, the edge will be ignored.

filterVertices: An optional list of example vertex documents that the traversal will
treat specially. If no examples are given, the traversal will handle all
encountered vertices equally. If one or many vertex examples are given, the
traversal will exclude any non-matching vertex from the result and/or not
descend into it. Optionally, filterVertices can contain the name of a user-defined
AQL function that should be responsible for filtering. If so, the AQL function is
expected to have the following signature:

function	(config,	vertex,	path)

If a custom AQL function is used, it is expected to return one of the following
values:

[]: Include the vertex in the result and descend into its connected edges
["prune"]: Will include the vertex in the result but not descend into its
connected edges
["exclude"]: Will not include the vertex in the result but descend into its
connected edges
["prune", "exclude"]: Will completely ignore the vertex and its connected
edges

vertexFilterMethod: Only useful in conjunction with filterVertices and if no user-
defined AQL function is used. If specified, it will influence how vertices are
handled that don't match the examples in filterVertices:

["prune"]: Will include non-matching vertices in the result but not descend
into them
["exclude"]: Will not include non-matching vertices in the result but
descend into them
["prune", "exclude"]: Will neither include non-matching vertices in the result
nor descend into them

The result of the TRAVERSAL function is a list of traversed points. Each point is a
document consisting of the following attributes:

vertex: The vertex at the traversal point
path: The path history for the traversal point. The path is a document with the
attributes vertices and edges, which are both lists. Note that path is only present
in the result if the paths attribute is set in the options

Examples

		TRAVERSAL(friends,	friendrelations,	"friends/john",	"outbound",	{

				strategy:	"depthfirst",

				order:	"postorder",

				itemOrder:	"backward",

				maxDepth:	6,

				paths:	true

		})

		//	filtering	on	specific	edges	(by	specifying	example	edges)

		TRAVERSAL(friends,	friendrelations,	"friends/john",	"outbound",	{

				strategy:	"breadthfirst",

				order:	"preorder",

				itemOrder:	"forward",

				followEdges:	[{	type:	"knows"	},	{	state:	"FL"	}]

		})

		//	filtering	on	specific	edges	and	vertices

		TRAVERSAL(friends,	friendrelations,	"friends/john",	"outbound",	{

				strategy:	"breadthfirst",

				order:	"preorder",

				itemOrder:	"forward",

				followEdges:	[{	type:	"knows"	},	{	state:	"FL"	}],

				filterVertices:	[{	isActive:	true	},	{	isDeleted:	false	}],

				vertexFilterMethod:	["prune",	"exclude"]

		})

		//	using	user-defined	AQL	functions	for	edge	and	vertex	filtering

		TRAVERSAL(friends,	friendrelations,	"friends/john",	"outbound",	{

				followEdges:	"myfunctions::checkedge",

				filterVertices:	"myfunctions::checkvertex"

		})

		//	to	register	the	custom	AQL	functions,	execute	something	in	the	fashion	of	the	

		//	following	commands	in	arangosh	once:	

		var	aqlfunctions	=	require("org/arangodb/aql/functions");

		//	these	are	the	actual	filter	functions

		aqlfunctions.register("myfunctions::checkedge",	function	(config,	vertex,	edge,	path)	{	

				return	(edge.type	!==	'dislikes');	//	don't	follow	these	edges

		},	false);

		aqlfunctions.register("myfunctions::checkvertex",	function	(config,	vertex,	path)	{	

				if	(vertex.isDeleted	||	!	vertex.isActive)	{

						return	["prune",	"exclude"];	//	exclude	these	and	don't	follow	them

				}

				return	[];	//	include	everything	else

		},	false);

If you have created a graph in the general-graph module you may want to use Graph
operations instead.

TRAVERSAL_TREE(vertexcollection, edgecollection, startVertex, direction,
connectName, options): Traverses the graph described by vertexcollection and
edgecollection, starting at the vertex identified by id startVertex and creates a
hierarchical result. Vertex connectivity is establish by inserted an attribute which has
the name specified via the connectName parameter. Connected vertices will be
placed in this attribute as a list.

The options are the same as for the TRAVERSAL function, except that the result will
be set up in a way that resembles a depth-first, pre-order visitation result. Thus, the
strategy and order attributes of the options attribute will be ignored.

Examples

		TRAVERSAL_TREE(friends,	friendrelations,	"friends/john",	"outbound",	"likes",	{	

				itemOrder:	"forward"

		})

When using one of AQL's graph functions please make sure that the graph does not
contain cycles, or that you at least specify some maximum depth or uniqueness criteria
for a traversal.

If no bounds are set, a traversal might run into an endless loop in a cyclic graph or sub-
graph, and even in a non-cyclic graph, traversing far into the graph might consume a lot
of processing time and memory for the result set.

If you have created a graph in the general-graph module you may want to use Graph
operations instead.

SHORTEST_PATH(vertexcollection, edgecollection, startVertex, endVertex,
direction, options): Determines the first shortest path from the startVertex to the
endVertex. Both vertices must be present in the vertex collection specified in
vertexcollection, and any connecting edges must be present in the collection
specified by edgecollection. Vertex connectivity is specified by the direction
parameter:

"outbound": Vertices are connected in _from to _to order
"inbound": Vertices are connected in _to to _from order
"any": Vertices are connected in both _to to _from and in _from to _to order The
search is aborted when a shortest path is found. Only the first shortest path will
be returned. Any vertex will be visited at most once by the search.

Additional options for the traversal can be provided via the options document:

maxIterations: Maximum number of iterations in the search. This number can be
set to bound long-running searches. When a search performs as many iterations
as the maxIterations value, the search will abort with an error. If maxIterations is
not set, a server-defined value may be used.
paths: If true, the result will not only contain the vertices along the shortest path,
but also the connecting edges. If false, only the encountered vertices will be
returned.
distance: An optional custom function to be used when calculating the distance
between a vertex and a neighboring vertex. The expected function signature is:

function	(config,	vertex1,	vertex2,	edge)

Both vertices and the connecting edge will be passed into the function. The
function is expected to return a numeric value that expresses the distance

between the two vertices. Higher values will mean higher distances, giving the
connection a lower priority in further analysis. If no custom distance function is
specified, all vertices are assumed to have the same distance (1) to each other.
If a function name is specified, it must have been registered as a regular user-
defined AQL function.

followEdges: An optional list of example edge documents that the search will
expand into. If no examples are given, the search will follow all edges. If one or
many edge examples are given, the search will only follow an edge if it matches
at least one of the specified examples. followEdges can also be a string with the
name of an AQL user-defined function that should be responsible for checking if
an edge should be followed. In this case, the AQL function will is expected to
have the following signature:

function	(config,	vertex,	edge,	path)

The function is expected to return a boolean value. If it returns true, the edge will
be followed. If false is returned, the edge will be ignored.

filterVertices: An optional list of example vertex documents that the search will
treat specially. If no examples are given, the search will handle all encountered
vertices equally. If one or many vertex examples are given, the search will
exclude the vertex from the result and/or not descend into it. Optionally,
filterVertices can contain the name of a user-defined AQL function that should
be responsible for filtering. If so, the AQL function is expected to have the
following signature:

function	(config,	vertex,	path)

If a custom AQL function is used, it is expected to return one of the following
values:

[]: Include the vertex in the result and descend into its connected edges
["prune"]: Will include the vertex in the result but not descend into its
connected edges
["exclude"]: Will not include the vertex in the result but descend into its
connected edges
["prune", "exclude"]: Will completely ignore the vertex and its connected
edges

The result of the SHORTEST_PATH function is a list with the components of the
shortest path. Each component is a document consisting of the following attributes:

vertex: The vertex at the traversal point
path: The path history for the traversal point. The path is a document with the
attributes vertices and edges, which are both lists. Note that path is only present
in the result if the paths attribute is set in the options.

Examples

		SHORTEST_PATH(cities,	motorways,	"cities/CGN",	"cities/MUC",	"outbound",	{

				paths:	true

		})

		//	using	a	user-defined	distance	function

		SHORTEST_PATH(cities,	motorways,	"cities/CGN",	"cities/MUC",	"outbound",	{

				paths:	true,

				distance:	"myfunctions::citydistance"

		})

		//	using	a	user-defined	function	to	filter	edges

		SHORTEST_PATH(cities,	motorways,	"cities/CGN",	"cities/MUC",	"outbound",	{

				paths:	true,

				followEdges:	"myfunctions::checkedge"

		})

		//	to	register	a	custom	AQL	distance	function,	execute	something	in	the	fashion	of	the	

		//	following	commands	in	arangosh	once:	

		var	aqlfunctions	=	require("org/arangodb/aql/functions");

		//	this	is	the	actual	distance	function

		aqlfunctions.register("myfunctions::distance",	function	(config,	vertex1,	vertex2,	edge)	{	

				return	Math.sqrt(Math.pow(vertex1.x	-	vertex2.x)	+	Math.pow(vertex1.y	-	vertex2.y));

		},	false);

		//	this	is	the	filter	function	for	the	edges

		aqlfunctions.register("myfunctions::checkedge",	function	(config,	vertex,	edge,	path)	{	

				return	(edge.underConstruction	===	false);	//	don't	follow	these	edges

		},	false);

EDGES(edgecollection, startvertex, direction, edgeexamples): Return all edges
connected to the vertex startvertex as a list. The possible values for direction are:

outbound: Return all outbound edges
inbound: Return all inbound edges
any: Return outbound and inbound edges

The edgeexamples parameter can optionally be used to restrict the results to specific
edge connections only. The matching is then done via the MATCHES function. To

not restrict the result to specific connections, edgeexamples should be left
unspecified.

Examples

		EDGES(friendrelations,	"friends/john",	"outbound")

		EDGES(friendrelations,	"friends/john",	"any",	[{	"$label":	"knows"	}])

If you have created a graph in the general-graph module you may want to use Graph
operations instead.

NEIGHBORS(vertexcollection, edgecollection, startvertex, direction, edgeexamples):
Return all neighbors that are directly connected to the vertex startvertex as a list.
The possible values for direction are:

outbound: Return all outbound edges
inbound: Return all inbound edges
any: Return outbound and inbound edges

The edgeexamples parameter can optionally be used to restrict the results to specific
edge connections only. The matching is then done via the MATCHES function. To
not restrict the result to specific connections, edgeexamples should be left
unspecified.

Examples

		NEIGHBORS(friends,	friendrelations,	"friends/john",	"outbound")

		NEIGHBORS(users,	usersrelations,	"users/john",	"any",	[{	"$label":	"recommends"	}])

Control flow functions

AQL offers the following functions to let the user control the flow of operations:

NOT_NULL(alternative, ...): Returns the first alternative that is not null, and null if all
alternatives are null themselves

FIRST_LIST(alternative, ...): Returns the first alternative that is a list, and null if none
of the alternatives is a list

FIRST_DOCUMENT(alternative, ...): Returns the first alternative that is a document,

and null if none of the alternatives is a document

Miscellaneous functions

Finally, AQL supports the following functions that do not belong to any of the other
function categories:

COLLECTIONS(): Returns a list of collections. Each collection is returned as a
document with attributes name and _id

CURRENT_USER(): Returns the name of the current user. The current user is the
user account name that was specified in the Authorization HTTP header of the
request. It will only be populated if authentication on the server is turned on, and if
the query was executed inside a request context. Otherwise, the return value of this
function will be null.

DOCUMENT(collection, id): Returns the document which is uniquely identified by the
id. ArangoDB will try to find the document using the _id value of the document in the
specified collection. If there is a mismatch between the collection passed and the
collection specified in id, then null will be returned. Additionally, if the collection
matches the collection value specified in id but the document cannot be found, null
will be returned. This function also allows id to be a list of ids. In this case, the
function will return a list of all documents that could be found.

Examples

		DOCUMENT(users,	"users/john")

		DOCUMENT(users,	"john")

		DOCUMENT(users,	["users/john",	"users/amy"])

		DOCUMENT(users,	["john",	"amy"])

Note: The DOCUMENT function is polymorphic since ArangoDB 1.4. It can now be used
with a single parameter id as follows:

DOCUMENT(id): In this case, id must either be a document handle string (consisting
of collection name and document key) or a list of document handle strings, e.g.

DOCUMENT("users/john")

DOCUMENT(["users/john",	"users/amy"])

SKIPLIST(collection, condition, skip, limit): Return all documents from a skiplist index
on collection collection that match the specified condition. This is a shortcut method
to use a skiplist index for retrieving specific documents in indexed order. The skiplist
index supports equality and less than/greater than queries. The skip and limit
parameters are optional but can be specified to further limit the results:

SKIPLIST(test,	{	created:	[['>',	0]]	},	0,	100)

SKIPLIST(test,	{	age:	[['>',	25],	['<=',	65]]	})

SKIPLIST(test,	{	a:	[['==',	10]],	b:	[['==',	25]]	}

The condition document must contain an entry for each attribute that is contained in
the index. It is not allowed to specify just a subset of attributes that are present in an
index. Additionally the attributes in the condition document must be specified in the
same order as in the index. If no suitable skiplist index is found, an error will be
raised and the query will be aborted.

Result sets

The result of an AQL query is a list of values. The individual values in the result list may
or may not have a homogeneous structure, depending on what is actually queried.

For example, when returning data from a collection with inhomogeneous documents (the
individual documents in the collection have different attribute names) without
modification, the result values will as well have an inhomogeneous structure. Each result
value itself is a document:

FOR	u	IN	users

		RETURN	u

[{	"id"	:	1,	"name"	:	"John",	"active"	:	false	},	

		{	"age"	:	32,	"id"	:	2,	"name"	:	"Vanessa"	},	

		{	"friends"	:	["John",	"Vanessa"],	"id"	:	3,	"name"	:	"Amy"	}]

However, if a fixed set of attributes from the collection is queried, then the query result
values will have a homogeneous structure. Each result value is still a document:

FOR	u	IN	users

		RETURN	{	"id"	:	u.id,	"name"	:	u.name	}

[{	"id"	:	1,	"name"	:	"John"	},	

		{	"id"	:	2,	"name"	:	"Vanessa"	},	

		{	"id"	:	3,	"name"	:	"Amy"	}]

It is also possible to query just scalar values. In this case, the result set is a list of scalars,
and each result value is a scalar value:

FOR	u	IN	users

		RETURN	u.id

[1,	2,	3]

If a query does not produce any results because no matching data can be found, it will
produce an empty result list:

Query results

[]

Errors

Issuing an invalid query to the server will result in a parse error if the query is
syntactically invalid. ArangoDB will detect such errors during query inspection and abort
further processing. Instead, the error number and an error message are returned so that
the errors can be fixed.

If a query passes the parsing stage, all collections referenced in the query will be opened.
If any of the referenced collections is not present, query execution will again be aborted
and an appropriate error message will be returned.

Under some circumstances, executing a query might also produce run-time errors that
cannot be predicted from inspecting the query text alone. This is because queries might
use data from collections that might also be inhomogeneous. Some examples that will
cause run-time errors are:

Division by zero: Will be triggered when an attempt is made to use the value 0 as the
divisor in an arithmetic division or modulus operation
Invalid operands for arithmetic operations: Will be triggered when an attempt is made
to use any non-numeric values as operands in arithmetic operations. This includes
unary (unary minus, unary plus) and binary operations (plus, minus, multiplication,
division, and modulus)
Invalid operands for logical operations: Will be triggered when an attempt is made to
use any non-boolean values as operand(s) in logical operations. This includes unary
(logical not/negation), binary (logical and, logical or), and the ternary operators

Please refer to the Arango Errors page for a list of error codes and meanings.

AQL supports a number of operators that can be used in expressions. There are
comparison, logical, arithmetic, and the ternary operator.

Comparison operators

Comparison (or relational) operators compare two operands. They can be used with any
input data types, and will return a boolean result value.

The following comparison operators are supported:

== equality
!= inequality
< less than
<= less or equal
> greater than
>= greater or equal
in test if a value is contained in a list

The in operator expects the second operand to be of type list. All other operators accept
any data types for the first and second operands.

Each of the comparison operators returns a boolean value if the comparison can be
evaluated and returns true if the comparison evaluates to true, and false otherwise.

Some examples for comparison operations in AQL:

1	>	0

true	!=	null

45	<=	"yikes!"

65	!=	"65"

65	==	65

1.23	<	1.32

1.5	IN	[2,	3,	1.5]

Logical operators

Logical operators combine two boolean operands in a logical operation and return a
boolean result value.

Operators

The following logical operators are supported:

&& logical and operator
|| logical or operator
! logical not/negation operator

Some examples for logical operations in AQL:

u.age	>	15	&&	u.address.city	!=	""

true	||	false

!u.isInvalid

The &&, ||, and ! operators expect their input operands to be boolean values each. If a
non-boolean operand is used, the operation will fail with an error. In case all operands
are valid, the result of each logical operator is a boolean value.

Both the && and || operators use short-circuit evaluation and only evaluate the second
operand if the result of the operation cannot be determined by checking the first operand
alone.

Arithmetic operators

Arithmetic operators perform an arithmetic operation on two numeric operands. The
result of an arithmetic operation is again a numeric value. Operators are supported.

AQL supports the following arithmetic operators:

+ addition
- subtraction
* multiplication
/ division
% modulus

These operators work with numeric operands only. Invoking any of the operators with
non-numeric operands will result in an error. An error will also be raised for some other
edge cases as division by zero, numeric over- or underflow etc. If both operands are
numeric and the computation result is also valid, the result will be returned as a numeric
value.

The unary plus and unary minus are supported as well.

Some example arithmetic operations:

1	+	1

33	-	99

12.4	*	4.5

13.0	/	0.1

23	%	7

-15

+9.99

Ternary operator

AQL also supports a ternary operator that can be used for conditional evaluation. The
ternary operator expects a boolean condition as its first operand, and it returns the result
of the second operand if the condition evaluates to true, and the third operand otherwise.

Examples

u.age	>	15	||	u.active	==	true	?	u.userId	:	null

Range operator

AQL supports expressing simple numeric ranges with the .. operator. This operator can
be used to easily iterate over a sequence of numeric values.

The .. operator will produce a list of values in the defined range, with both bounding
values included.

Examples

2010..2013

will produce the following result:

[2010,	2011,	2012,	2013]

Operator precedence

The operator precedence in AQL is as follows (lowest precedence first):

? : ternary operator
|| logical or
&& logical and
==, != equality and inequality
in in operator
<, <=, >=, > less than, less equal, greater equal, greater than
+, - addition, subtraction
**, /, %* multiplication, division, modulus
!, +, - logical negation, unary plus, unary minus
[]* expansion
() function call
. member access
[] indexed value access

The parentheses (and) can be used to enforce a different operator evaluation order.

FOR

The FOR keyword can be to iterate over all elements of a list. The general syntax is:

FOR	variable-name	IN	expression

Each list element returned by expression is visited exactly once. It is required that
expression returns a list in all cases. The empty list is allowed, too. The current list
element is made available for further processing in the variable specified by variable-
name.

FOR	u	IN	users

		RETURN	u

This will iterate over all elements from the list users (note: this list consists of all
documents from the collection named "users" in this case) and make the current list
element available in variable u. u is not modified in this example but simply pushed into
the result using the RETURN keyword.

Note: When iterating over collection-based lists as shown here, the order of documents is
undefined unless an explicit sort order is defined using a SORT statement.

The variable introduced by FOR is available until the scope the FOR is placed in is
closed.

Another example that uses a statically declared list of values to iterate over:

FOR	year	IN	[2011,	2012,	2013]

		RETURN	{	"year"	:	year,	"isLeapYear"	:	year	%	4	==	0	&&	(year	%	100	!=	0	||	year	%	400	==	0)	}

Nesting of multiple FOR statements is allowed, too. When FOR statements are nested, a
cross product of the list elements returned by the individual FOR statements will be
created.

High-level operations

FOR	u	IN	users

		FOR	l	IN	locations

				RETURN	{	"user"	:	u,	"location"	:	l	}

In this example, there are two list iterations: an outer iteration over the list users plus an
inner iteration over the list locations. The inner list is traversed as many times as there
are elements in the outer list. For each iteration, the current values of users and locations
are made available for further processing in the variable u and l.

RETURN

The RETURN statement can (and must) be used to produce the result of a query. It is
mandatory to specify a RETURN statement at the end of each block in a query, otherwise
the query result would be undefined.

The general syntax for return is:

RETURN	expression

The expression returned by RETURN is produced for each iteration the RETURN
statement is placed in. That means the result of a RETURN statement is always a list
(this includes the empty list). To return all elements from the currently iterated list without
modification, the following simple form can be used:

FOR	variable-name	IN	expression

		RETURN	variable-name

As RETURN allows specifying an expression, arbitrary computations can be performed to
calculate the result elements. Any of the variables valid in the scope the RETURN is
placed in can be used for the computations.

Note: Return will close the current scope and eliminate all local variables in it.

FILTER

The FILTER statement can be used to restrict the results to elements that match an
arbitrary logical condition. The general syntax is:

FILTER	condition

condition must be a condition that evaluates to either false or true. If the condition result
is false, the current element is skipped, so it will not be processed further and not be part
of the result. If the condition is true, the current element is not skipped and can be further
processed.

FOR	u	IN	users

		FILTER	u.active	==	true	&&	u.age	<	39

		RETURN	u

In the above example, all list elements from users will be included that have an attribute
active with value true and that have an attribute age with a value less than 39. All other
elements from users will be skipped and not be included the result produced by
RETURN.

It is allowed to specify multiple FILTER statements in a query, and even in the same
block. If multiple FILTER statements are used, their results will be combined with a
logical and, meaning all filter conditions must be true to include an element.

FOR	u	IN	users

		FILTER	u.active	==	true

		FILTER	u.age	<	39

		RETURN	u

SORT

The SORT statement will force a sort of the list of already produced intermediate results
in the current block. SORT allows specifying one or multiple sort criteria and directions.
The general syntax is:

SORT	expression	direction

Specifying the direction is optional. The default (implicit) direction for a sort is the
ascending order. To explicitly specify the sort direction, the keywords ASC (ascending)
and DESC can be used. Multiple sort criteria can be separated using commas.

Note: when iterating over collection-based lists, the order of documents is always

undefined unless an explicit sort order is defined using SORT.

FOR	u	IN	users

		SORT	u.lastName,	u.firstName,	u.id	DESC

		RETURN	u

LIMIT

The LIMIT statement allows slicing the list of result documents using an offset and a
count. It reduces the number of elements in the result to at most the specified number.
Two general forms of LIMIT are followed:

LIMIT	count

LIMIT	offset,	count

The first form allows specifying only the count value whereas the second form allows
specifying both offset and count. The first form is identical using the second form with an
offset value of 0.

The offset value specifies how many elements from the result shall be discarded. It must
be 0 or greater. The count value specifies how many elements should be at most
included in the result.

FOR	u	IN	users

		SORT	u.firstName,	u.lastName,	u.id	DESC

		LIMIT	0,	5

		RETURN	u

LET

The LET statement can be used to assign an arbitrary value to a variable. The variable is
then introduced in the scope the LET statement is placed in. The general syntax is:

LET	variable-name	=	expression

LET statements are mostly used to declare complex computations and to avoid repeated
computations of the same value at multiple parts of a query.

FOR	u	IN	users

		LET	numRecommendations	=	LENGTH(u.recommendations)

		RETURN	{	"user"	:	u,	"numRecommendations"	:	numRecommendations,	"isPowerUser"	:	numRecommendations	>=	10	}

In the above example, the computation of the number of recommendations is factored out
using a LET statement, thus avoiding computing the value twice in the RETURN
statement.

Another use case for LET is to declare a complex computation in a subquery, making the
whole query more readable.

FOR	u	IN	users

		LET	friends	=	(

		FOR	f	IN	friends	

				FILTER	u.id	==	f.userId

				RETURN	f

)

		LET	memberships	=	(

		FOR	m	IN	memberships

				FILTER	u.id	==	m.userId

						RETURN	m

)

		RETURN	{	"user"	:	u,	"friends"	:	friends,	"numFriends"	:	LENGTH(friends),	"memberShips"	:	memberships	}

COLLECT

The COLLECT keyword can be used to group a list by one or multiple group criteria. The
two general syntaxes for COLLECT are:

COLLECT	variable-name	=	expression

COLLECT	variable-name	=	expression	INTO	groups

The first form only groups the result by the defined group criteria defined by expression.
In order to further process the results produced by COLLECT, a new variable (specified
by variable-name) is introduced. This variable contains the group value.

The second form does the same as the first form, but additionally introduces a variable
(specified by groups) that contains all elements that fell into the group. Specifying the
INTO clause is optional-

FOR	u	IN	users

		COLLECT	city	=	u.city	INTO	g

		RETURN	{	"city"	:	city,	"users"	:	g	}

In the above example, the list of users will be grouped by the attribute city. The result is a
new list of documents, with one element per distinct city value. The elements from the
original list (here: users) per city are made available in the variable g. This is due to the
INTO clause.

COLLECT also allows specifying multiple group criteria. Individual group criteria can be
separated by commas.

FOR	u	IN	users

		COLLECT	first	=	u.firstName,	age	=	u.age	INTO	g

		RETURN	{	"first"	:	first,	"age"	:	age,	"numUsers"	:	LENGTH(g)	}

In the above example, the list of users is grouped by first names and ages first, and for
each distinct combination of first name and age, the number of users found is returned.

Note: The COLLECT statement eliminates all local variables in the current scope. After
COLLECT only the variables introduced by COLLECT itself are available.

REMOVE

The REMOVE keyword can be used to remove documents from a collection. On a single
server, the document removal is executed transactionally in an all-or-nothing fashion. For
sharded collections, the entire remove operation is not transactional.

Only a single REMOVE statement is allowed per AQL query, and it cannot be combined
with other data-modification or retrieval operations. A remove operation is restricted to a
single collection, and the collection name must not be dynamic.

The syntax for a remove operation is:

REMOVE	key-expression	IN	collection	options

collection must contain the name of the collection to remove the documents from. key-
expression must be an expression that contains the document identification. This can
either be a string (which must then contain the document key) or a document, which must
contain a _key attribute.

The following queries are thus equivalent:

FOR	u	IN	users

		REMOVE	{	_key:	u._key	}	IN	users

FOR	u	IN	users

		REMOVE	u._key	IN	users

FOR	u	IN	users

		REMOVE	u	IN	users

Note: A remove operation can remove arbitrary documents, and the documents do not
need to be identical to the ones produced by a preceding FOR statement:

FOR	i	IN	1..1000

		REMOVE	{	_key:	CONCAT('test',	TO_STRING(i))	}	IN	users

FOR	u	IN	users

		FILTER	u.active	==	false

		REMOVE	{	_key:	u._key	}	IN	backup

options can be used to suppress query errors that might occur when trying to remove
non-existing documents. For example, the following query will fail if one of the to-be-
deleted documents does not exist:

FOR	i	IN	1..1000

		REMOVE	{	_key:	CONCAT('test',	TO_STRING(i))	}	IN	users

By specifying the ignoreErrors query option, these errors can be suppressed so the query
completes:

FOR	i	IN	1..1000

		REMOVE	{	_key:	CONCAT('test',	TO_STRING(i))	}	IN	users	OPTIONS	{	ignoreErrors:	true	}

To make sure data are durable when a query returns, there is the waitForSync query
option:

FOR	i	IN	1..1000

		REMOVE	{	_key:	CONCAT('test',	TO_STRING(i))	}	IN	users	OPTIONS	{	waitForSync:	true	}

UPDATE

The UPDATE keyword can be used to partially update documents in a collection. On a
single server, updates are executed transactionally in an all-or-nothing fashion. For
sharded collections, the entire update operation is not transactional.

Only a single UPDATE statement is allowed per AQL query, and it cannot be combined
with other data-modification or retrieval operations. An update operation is restricted to a
single collection, and the collection name must not be dynamic.

The two syntaxes for an update operation are:

UPDATE	document	IN	collection	options

UPDATE	key-expression	WITH	document	IN	collection	options

collection must contain the name of the collection in which the documents should be
updated. document must be a document that contains the attributes and values to be
updated. When using the first syntax, document must also contain the _key attribute to
identify the document to be updated.

FOR	u	IN	users

		UPDATE	{	_key:	u._key,	name:	CONCAT(u.firstName,	u.lastName)	}	IN	users

The following query is invalid because it does not contain a _key attribute and thus it is
not possible to determine the documents to be updated:

FOR	u	IN	users

		UPDATE	{	name:	CONCAT(u.firstName,	u.lastName)	}	IN	users

When using the second syntax, key-expression provides the document identification. This
can either be a string (which must then contain the document key) or a document, which
must contain a _key attribute.

The following queries are equivalent:

FOR	u	IN	users

		UPDATE	u._key	WITH	{	name:	CONCAT(u.firstName,	u.lastName)	}	IN	users

FOR	u	IN	users

		UPDATE	{	_key:	u._key	}	WITH	{	name:	CONCAT(u.firstName,	u.lastName)	}	IN	users

FOR	u	IN	users

		UPDATE	u	WITH	{	name:	CONCAT(u.firstName,	u.lastName)	}	IN	users

An update operation may update arbitrary documents which do not need to be identical to
the ones produced by a preceding FOR statement:

FOR	i	IN	1..1000

		UPDATE	CONCAT('test',	TO_STRING(i))	WITH	{	foobar:	true	}	IN	users

FOR	u	IN	users

		FILTER	u.active	==	false

		UPDATE	u	WITH	{	status:	'inactive'	}	IN	backup

options can be used to suppress query errors that might occur when trying to update non-
existing documents or violating unique key constraints:

FOR	i	IN	1..1000

		UPDATE	{	_key:	CONCAT('test',	TO_STRING(i))	}	WITH	{	foobar:	true	}	IN	users	OPTIONS	{	ignoreErrors:	true	}

An update operation will only update the attributes specified in document and leave other
attributes untouched. Internal attributes (such as _id, _key, _rev, _from and _to) cannot
be updated and are ignored when specified in document. Updating a document will
modify the document's revision number with a server-generated value.

When updating an attribute with a null value, ArangoDB will not remove the attribute from
the document but store a null value for it. To get rid of attributes in an update operation,
set them to null and provide the keepNull option:

FOR	u	IN	users

		UPDATE	u	WITH	{	foobar:	true,	notNeeded:	null	}	IN	users	OPTIONS	{	keepNull:	false	}

The above query will remove the notNeeded attribute from the documents and update the
foobar attribute normally.

To make sure data are durable when an update query returns, there is the waitForSync

query option:

FOR	u	IN	users

		UPDATE	u	WITH	{	foobar:	true	}	IN	users	OPTIONS	{	waitForSync:	true	}

REPLACE

The REPLACE keyword can be used to completely replace documents in a collection. On
a single server, the replace operation is executed transactionally in an all-or-nothing
fashion. For sharded collections, the entire replace operation is not transactional.

Only a single REPLACE statement is allowed per AQL query, and it cannot be combined
with other data-modification or retrieval operations. A replace operation is restricted to a
single collection, and the collection name must not be dynamic.

The two syntaxes for a replace operation are:

REPLACE	document	IN	collection	options

REPLACE	key-expression	WITH	document	IN	collection	options

collection must contain the name of the collection in which the documents should be
replaced. document is the replacement document. When using the first syntax, document
must also contain the _key attribute to identify the document to be replaced.

FOR	u	IN	users

		REPLACE	{	_key:	u._key,	name:	CONCAT(u.firstName,	u.lastName),	status:	u.status	}	IN	users

The following query is invalid because it does not contain a _key attribute and thus it is
not possible to determine the documents to be replaced:

FOR	u	IN	users

		REPLACE	{	name:	CONCAT(u.firstName,	u.lastName,	status:	u.status)	}	IN	users

When using the second syntax, key-expression provides the document identification. This
can either be a string (which must then contain the document key) or a document, which
must contain a _key attribute.

The following queries are equivalent:

FOR	u	IN	users

		REPLACE	{	_key:	u._key,	name:	CONCAT(u.firstName,	u.lastName)	}	IN	users

FOR	u	IN	users

		REPLACE	u._key	WITH	{	name:	CONCAT(u.firstName,	u.lastName)	}	IN	users

FOR	u	IN	users

		REPLACE	{	_key:	u._key	}	WITH	{	name:	CONCAT(u.firstName,	u.lastName)	}	IN	users

FOR	u	IN	users

		REPLACE	u	WITH	{	name:	CONCAT(u.firstName,	u.lastName)	}	IN	users

A replace will fully replace an existing document, but it will not modify the values of
internal attributes (such as _id, _key, _from and _to). Replacing a document will modify a
document's revision number with a server-generated value.

A replace operation may update arbitrary documents which do not need to be identical to
the ones produced by a preceding FOR statement:

FOR	i	IN	1..1000

		REPLACE	CONCAT('test',	TO_STRING(i))	WITH	{	foobar:	true	}	IN	users

FOR	u	IN	users

		FILTER	u.active	==	false

		REPLACE	u	WITH	{	status:	'inactive',	name:	u.name	}	IN	backup

options can be used to suppress query errors that might occur when trying to replace
non-existing documents or when violating unique key constraints:

FOR	i	IN	1..1000

		REPLACE	{	_key:	CONCAT('test',	TO_STRING(i))	}	WITH	{	foobar:	true	}	IN	users	OPTIONS	{	ignoreErrors:	true	}

To make sure data are durable when a replace query returns, there is the waitForSync
query option:

FOR	i	IN	1..1000

		REPLACE	{	_key:	CONCAT('test',	TO_STRING(i))	}	WITH	{	foobar:	true	}	IN	users	OPTIONS	{	waitForSync:	true	}

INSERT

The INSERT keyword can be used to insert new documents into a collection. On a single
server, an insert operation is executed transactionally in an all-or-nothing fashion. For
sharded collections, the entire insert operation is not transactional.

Only a single INSERT statement is allowed per AQL query, and it cannot be combined
with other data-modification or retrieval operations. An insert operation is restricted to a
single collection, and the collection name must not be dynamic.

The syntax for an insert operation is:

INSERT	document	IN	collection	options

Note: The INTO keyword is also allowed in the place of IN.

collection must contain the name of the collection into which the documents should be
inserted. document is the document to be inserted, and it may or may not contain a _key
attribute. If no _key attribute is provided, ArangoDB will auto-generate a value for _key
value. Inserting a document will also auto-generate a document revision number for the
document.

FOR	i	IN	1..100

		INSERT	{	value:	i	}	IN	numbers

When inserting into an edge collection, it is mandatory to specify the attributes _from and
_to in document:

FOR	u	IN	users

		FOR	p	IN	products

				FILTER	u._key	==	p.recommendedBy

				INSERT	{	_from:	u._id,	_to:	p._id	}	IN	recommendations

options can be used to suppress query errors that might occur when violating unique key
constraints:

FOR	i	IN	1..1000

		INSERT	{	_key:	CONCAT('test',	TO_STRING(i)),	name:	"test"	}	WITH	{	foobar:	true	}	IN	users	OPTIONS	{	ignoreErrors:	true	}

To make sure data are durable when an insert query returns, there is the waitForSync
query option:

FOR	i	IN	1..1000

		INSERT	{	_key:	CONCAT('test',	TO_STRING(i)),	name:	"test"	}	WITH	{	foobar:	true	}	IN	users	OPTIONS	{	waitForSync:	true	}

This chapter describes graph related AQL functions.

Short explanation of the example parameter

A lot of the following functions accept a vertex (or edge) example as parameter. This can
contain the following:

{} : Returns all possible vertices for this graph
idString : Returns the vertex/edge with the id idString
{key1 : value1, key2 : value2} : Returns the vertices/edges that match this example,
which means that both have key1 and key2 with the corresponding attributes
{key1.key2 : value1, key3 : value2} : It is possible to chain keys which means that a
document { key1 : {key2 : value1}, key3 : value2} would be a match
[{key1 : value1}, {key2 : value2}] : Returns the vertices/edges that match one of the
examples, which means that either key1 or key2 are set with the corresponding
value

The complexity of the shortest path algorithms

Most of the functions described in this chapter calculate the shortest paths for subsets of
the graphs vertices. Hence the complexity of these functions depends of the chosen
algorithm for this task. For Floyd-Warshall it is O(n^3) with n being the amount of vertices
in the graph. For Dijkstra it would be O(x*y*n^2) with n being the amount of vertices in
the graph, x the amount of start vertices and y the amount of target vertices. Hence a
suggestion might be to use Dijkstra when x*y < n and the functions supports choosing
your algorithm.

Edges and Vertices related functions

This section describes various AQL functions which can be used to receive information
about the graph's vertices, edges, neighbor relationship and shared properties.

GRAPH_EDGES

	GRAPH_EDGES	(graphName,	vertexExample,	options)	

The GRAPH_EDGES function returns all edges of the graph connected to the vertices
defined by the example.

Graph operations

http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

The complexity of this method is O(n*m^x) with n being the vertices defined by the
parameter vertexExamplex, m the average amount of edges of a vertex and x the
maximal depths. Hence the default call would have a complexity of O(n*m);

Parameters

graphName : The name of the graph as a string.
vertexExample : An example for the desired vertices (see example).
options (optional) : An object containing the following options:

direction : The direction of the edges as a string. Possible values are outbound,
inbound and any (default).
edgeCollectionRestriction : One or multiple edge collection names. Only edges
from these collections will be considered for the path.
startVertexCollectionRestriction : One or multiple vertex collection names. Only
vertices from these collections will be considered as start vertex of a path.
endVertexCollectionRestriction : One or multiple vertex collection names. Only
vertices from these collections will be considered as end vertex of a path.
edgeExamples : A filter example for the edges (see example).
neighborExamples : An example for the desired neighbors (see example).
minDepth : Defines the minimal length of a path from an edge to a vertex
(default is 1, which means only the edges directly connected to a vertex would
be returned).
maxDepth : Defines the maximal length of a path from an edge to a vertex
(default is 1, which means only the edges directly connected to a vertex would
be returned).

Examples

A route planner example, all edges to locations with a distance of either 700 or 600.:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_EDGES("

........>	+"'routeplanner',	{},	{edgeExamples	:	[{distance:	600},	{distance:	700}]})	RETURN	e"

........>).toArray();

show execution results
A route planner example, all outbound edges of Hamburg with a maximal depth of 2 :

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_EDGES("

........>	+"'routeplanner',	'germanCity/Hamburg',	{direction	:	'outbound',	maxDepth	:	2})	RETURN	e"

........>).toArray();

show execution results
GRAPH_VERTICES

The GRAPH_VERTICES function returns all vertices.

	GRAPH_VERTICES	(graphName,	vertexExample,	options)	

According to the optional filters it will only return vertices that have outbound, inbound or
any (default) edges.

Parameters

graphName : The name of the graph as a string.
vertexExample : An example for the desired vertices (see example).
options (optional) : An object containing the following options:

direction : The direction of the edges as a string. Possible values are outbound,
inbound and any (default).
vertexCollectionRestriction : One or multiple vertex collections that should be
considered.

Examples

A route planner example, all vertices of the graph

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_VERTICES("

........>	+"'routeplanner',	{})	RETURN	e").toArray();

show execution results
A route planner example, all vertices from collection germanCity.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_VERTICES("

........>	+"'routeplanner',	{},	{direction	:	'any',	vertexCollectionRestriction"	+

........>	"	:	'germanCity'})	RETURN	e").toArray();

show execution results
GRAPH_NEIGHBORS

The GRAPH_NEIGHBORS function returns all neighbors of vertices.

	GRAPH_NEIGHBORS	(graphName,	vertexExample,	options)	

By default only the direct neighbors (path length equals 1) are returned, but one can
define the range of the path length to the neighbors with the options minDepth and
maxDepth. The complexity of this method is O(n*m^x) with n being the vertices defined
by the parameter vertexExamplex, m the average amount of neighbors and x the
maximal depths. Hence the default call would have a complexity of O(n*m);

Parameters

graphName : The name of the graph as a string.
vertexExample : An example for the desired vertices (see example).
options : An object containing the following options:

direction : The direction of the edges. Possible values are outbound, inbound
and any (default).
edgeExamples : A filter example for the edges to the neighbors (see example).
neighborExamples : An example for the desired neighbors (see example).
edgeCollectionRestriction : One or multiple edge collection names. Only edges
from these collections will be considered for the path.
vertexCollectionRestriction : One or multiple vertex collection names. Only
vertices from these collections will be contained in the result. This does not
effect vertices on the path.
minDepth : Defines the minimal depth a path to a neighbor must have to be
returned (default is 1).
maxDepth : Defines the maximal depth a path to a neighbor must have to be
returned (default is 1).

Examples

A route planner example, all neighbors of locations with a distance of either 700 or 600.:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_NEIGHBORS("

........>	+"'routeplanner',	{},	{edgeExamples	:	[{distance:	600},	{distance:	700}]})	RETURN	e"

........>).toArray();

show execution results
A route planner example, all outbound neighbors of Hamburg with a maximal depth of 2 :

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_NEIGHBORS("

........>	+"'routeplanner',	'germanCity/Hamburg',	{direction	:	'outbound',	maxDepth	:	2})	RETURN	e"

........>).toArray();

show execution results
GRAPH_COMMON_NEIGHBORS

The GRAPH_COMMON_NEIGHBORS function returns all common neighbors of the
vertices defined by the examples.

	GRAPH_COMMON_NEIGHBORS	(graphName,	vertex1Example,	vertex2Examples,	optionsVertex1,

optionsVertex2)	

This function returns the intersection of GRAPH_NEIGHBORS(vertex1Example,
optionsVertex1) and GRAPH_NEIGHBORS(vertex2Example, optionsVertex2). The
complexity of this method is O(n*m^x) with n being the maximal amount of vertices
defined by the parameters vertexExamples, m the average amount of neighbors and x
the maximal depths. Hence the default call would have a complexity of O(n*m);

For parameter documentation read the documentation of GRAPH_NEIGHBORS.

Examples

A route planner example, all common neighbors of capitals.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_COMMON_NEIGHBORS("

........>	+"'routeplanner',	{isCapital	:	true},	{isCapital	:	true})	RETURN	e"

........>).toArray();

show execution results
A route planner example, all common outbound neighbors of Hamburg with any other
location which have a maximal depth of 2 :

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_COMMON_NEIGHBORS("

........>	+"'routeplanner',	'germanCity/Hamburg',	{},	{direction	:	'outbound',	maxDepth	:	2},	"+

........>	"{direction	:	'outbound',	maxDepth	:	2})	RETURN	e"

........>).toArray();

show execution results
GRAPH_COMMON_PROPERTIES

	GRAPH_COMMON_PROPERTIES	(graphName,	vertex1Example,	vertex2Examples,	options)	

The GRAPH_COMMON_PROPERTIES function returns a list of objects which have the
id of the vertices defined by vertex1Example as keys and a list of vertices defined by
vertex21Example, that share common properties as value. Notice that only the vertex id
and the matching attributes are returned in the result.

The complexity of this method is O(n) with n being the maximal amount of vertices
defined by the parameters vertexExamples.

Parameters

graphName : The name of the graph as a string.
vertex1Example : An example for the desired vertices (see example).
vertex2Example : An example for the desired vertices (see example).
options (optional) : An object containing the following options:

vertex1CollectionRestriction : One or multiple vertex collection names. Only
vertices from these collections will be considered.
vertex2CollectionRestriction : One or multiple vertex collection names. Only
vertices from these collections will be considered.
ignoreProperties : One or multiple attributes of a document that should be
ignored, either a string or an array..

Examples

A route planner example, all locations with the same properties:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_COMMON_PROPERTIES("

........>	+"'routeplanner',	{},	{})	RETURN	e"

........>).toArray();

show execution results
A route planner example, all cities which share same properties except for population.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_COMMON_PROPERTIES("

........>	+"'routeplanner',	{},	{},	{ignoreProperties:	'population'})	RETURN	e"

........>).toArray();

show execution results
Shortest Paths, distances and traversals.

This section describes AQL functions, that calculate pathes from a subset of vertices in a
graph to another subset of vertices.

GRAPH_PATHS

The GRAPH_PATHS function returns all paths of a graph.

	GRAPH_PATHS	(graphName,	options)	

The complexity of this method is O(n*n*m) with n being the amount of vertices in the
graph and m the average amount of connected edges;

Parameters

graphName : The name of the graph as a string.
options : An object containing the following options:

direction : The direction of the edges. Possible values are any, inbound and
outbound (default).
followCycles (optional) : If set to true the query follows cycles in the graph,
default is false.
minLength (optional) : Defines the minimal length a path must have to be
returned (default is 0).
maxLength (optional) : Defines the maximal length a path must have to be
returned (default is 10).

Examples

Return all paths of the graph "social":

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("social");

arangosh>	db._query("RETURN	GRAPH_PATHS('social')").toArray();

show execution results
Return all inbound paths of the graph "social" with a maximal length of 1 and a minimal
length of 2:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("social");

arangosh>	db._query(

........>	"RETURN	GRAPH_PATHS('social',	{direction	:	'inbound',	minLength	:	1,	maxLength	:		2})"

........>).toArray();

show execution results
GRAPH_SHORTEST_PATH

The GRAPH_SHORTEST_PATH function returns all shortest paths of a graph.

	GRAPH_SHORTEST_PATH	(graphName,	startVertexExample,	endVertexExample,	options)	

This function determines all shortest paths in a graph identified by graphName. If one
wants to call this function to receive nearly all shortest paths for a graph the option
algorithm should be set to Floyd-Warshall to increase performance. If no algorithm is
provided in the options the function chooses the appropriate one (either Floyd-Warshall
or Dijkstra) according to its parameters. The length of a path is by default the amount of
edges from one start vertex to an end vertex. The option weight allows the user to define
an edge attribute representing the length.

The complexity of the function is described here.

Parameters

graphName : The name of the graph as a string.
startVertexExample : An example for the desired start Vertices (see example).
endVertexExample : An example for the desired end Vertices (see example).
options (optional) : An object containing the following options:

direction : The direction of the edges as a string. Possible values are outbound,
inbound and any (default).
edgeCollectionRestriction : One or multiple edge collection names. Only edges
from these collections will be considered for the path.

http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

startVertexCollectionRestriction : One or multiple vertex collection names. Only
vertices from these collections will be considered as start vertex of a path.
endVertexCollectionRestriction : One or multiple vertex collection names. Only
vertices from these collections will be considered as end vertex of a path.
edgeExamples : A filter example for the edges in the shortest paths (see
example).
algorithm : The algorithm to calculate the shortest paths. If both start and end
vertex examples are empty Floyd-Warshall is used, otherwise the default is
Dijkstra.
weight : The name of the attribute of the edges containing the length as a string.
defaultWeight : Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as length. If no
default is supplied the default would be positive Infinity so the path could not be
calculated.

Examples

A route planner example, shortest distance from all german to all french cities:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_SHORTEST_PATH("

........>	+	"'routeplanner',	{},	{},	{"	+

........>	"weight	:	'distance',	endVertexCollectionRestriction	:	'frenchCity',	"	+

........>	"startVertexCollectionRestriction	:	'germanCity'})	RETURN	[e.startVertex,	e.vertex._id,	"	+

........>	"e.distance,	LENGTH(e.paths)]"

........>).toArray();

show execution results
A route planner example, shortest distance from Hamburg and Cologne to Lyon:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_SHORTEST_PATH("

........>	+"'routeplanner',	[{_id:	'germanCity/Cologne'},{_id:	'germanCity/Munich'}],	"	+

........>	"'frenchCity/Lyon',	"	+

........>	"{weight	:	'distance'})	RETURN	[e.startVertex,	e.vertex._id,	e.distance,	LENGTH(e.paths)]"

........>).toArray();

show execution results
GRAPH_TRAVERSAL

http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

The GRAPH_TRAVERSAL function traverses through the graph.

	GRAPH_TRAVERSAL	(graphName,	startVertexExample,	direction,	options)	

This function performs traversals on the given graph.

The complexity of this function strongly depends on the usage.

Parameters

graphName : The name of the graph as a string.
startVertexExample : An example for the desired vertices (see example).
direction : The direction of the edges as a string. Possible values are outbound,
inbound and any (default).
options: Object containing optional options.

Options:

strategy: determines the visitation strategy. Possible values are depthfirst and
breadthfirst. Default is breadthfirst.
order: determines the visitation order. Possible values are preorder and postorder.
itemOrder: determines the order in which connections returned by the expander will
be processed. Possible values are forward and backward.
maxDepth: if set to a value greater than 0, this will limit the traversal to this maximum
depth.
minDepth: if set to a value greater than 0, all vertices found on a level below the
minDepth level will not be included in the result.
maxIterations: the maximum number of iterations that the traversal is allowed to
perform. It is sensible to set this number so unbounded traversals will terminate at
some point.
uniqueness: an object that defines how repeated visitations of vertices should be
handled. The uniqueness object can have a sub-attribute vertices, and a sub-
attribute edges. Each sub-attribute can have one of the following values:

"none": no uniqueness constraints
"path": element is excluded if it is already contained in the current path. This
setting may be sensible for graphs that contain cycles (e.g. A -> B -> C -> A).
"global": element is excluded if it was already found/visited at any point during
the traversal.

Examples

A route planner example, start a traversal from Hamburg :

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_TRAVERSAL('routeplanner',	'germanCity/Hamburg',"	+

........>	"	'outbound')	RETURN	e"

........>).toArray();

show execution results
A route planner example, start a traversal from Hamburg with a max depth of 1 so only
the direct neighbors of Hamburg are returned:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_TRAVERSAL('routeplanner',	'germanCity/Hamburg',"	+

........>	"	'outbound',	{maxDepth	:	1})	RETURN	e"

........>).toArray();

show execution results
GRAPH_TRAVERSAL_TREE

The GRAPH_TRAVERSAL_TREE function traverses through the graph.

	GRAPH_TRAVERSAL_TREE	(graphName,	startVertexExample,	direction,	connectName,	options)	

This function creates a tree format from the result for a better visualization of the path.
This function performs traversals on the given graph.

The complexity of this function strongly depends on the usage.

Parameters

graphName : The name of the graph as a string.
startVertexExample : An example for the desired vertices (see example).
direction : The direction of the edges as a string. Possible values are outbound,
inbound and any (default).
connectName : The result attribute which contains the connection.
options (optional) : An object containing options, see Graph Traversals:

Examples

A route planner example, start a traversal from Hamburg :

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_TRAVERSAL_TREE('routeplanner',	'germanCity/Hamburg',"	+

........>	"	'outbound',	'connnection')	RETURN	e"

........>).toArray();

show execution results
A route planner example, start a traversal from Hamburg with a max depth of 1 so only
the direct neighbors of Hamburg are returned:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_TRAVERSAL_TREE('routeplanner',	'germanCity/Hamburg',"+

........>	"	'outbound',	'connnection',	{maxDepth	:	1})	RETURN	e"

........>).toArray();

show execution results
GRAPH_DISTANCE_TO

The GRAPH_DISTANCE_TO function returns all paths and there distance within a graph.

	GRAPH_DISTANCE_TO	(graphName,	startVertexExample,	endVertexExample,	options)	

This function is a wrapper of GRAPH_SHORTEST_PATH. It does not return the actual
path but only the distance between two vertices.

Examples

A route planner example, distance from all french to all german cities:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_DISTANCE_TO("

........>	+"'routeplanner',	{},	{},	{	"	+

........>	"	weight	:	'distance',	endVertexCollectionRestriction	:	'germanCity',	"	+

........>	"startVertexCollectionRestriction	:	'frenchCity'})	RETURN	[e.startVertex,	e.vertex._id,	"	+

........>	"e.distance]"

........>).toArray();

show execution results
A route planner example, distance from Hamburg and Cologne to Lyon:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("FOR	e	IN	GRAPH_DISTANCE_TO("

........>	+	"'routeplanner',	[{_id:	'germanCity/Cologne'},{_id:	'germanCity/Hamburg'}],	"	+

........>	"'frenchCity/Lyon',	"	+

........>	"{weight	:	'distance'})	RETURN	[e.startVertex,	e.vertex._id,	e.distance]"

........>).toArray();

show execution results
Graph measurements.

This section describes AQL functions to calculate various graph related measurements
as defined in the mathematical graph theory.

GRAPH_ABSOLUTE_ECCENTRICITY

	GRAPH_ABSOLUTE_ECCENTRICITY	(graphName,	vertexExample,	options)	

The GRAPH_ABSOLUTE_ECCENTRICITY function returns the eccentricity of the
vertices defined by the examples.

The complexity of the function is described here.

Parameters

graphName : The name of the graph as a string.
vertexExample : An example for the desired vertices (see example).
options (optional) : An object containing the following options:

direction : The direction of the edges as a string. Possible values are outbound,
inbound and any (default).
edgeCollectionRestriction : One or multiple edge collection names. Only edges
from these collections will be considered for the path.
startVertexCollectionRestriction : One or multiple vertex collection names. Only
vertices from these collections will be considered as start vertex of a path.
endVertexCollectionRestriction : One or multiple vertex collection names. Only
vertices from these collections will be considered as end vertex of a path.
edgeExamples : A filter example for the edges in the shortest paths (see
example).
algorithm : The algorithm to calculate the shortest paths as a string. If vertex
example is empty Floyd-Warshall is used as default, otherwise the default is
Dijkstra

http://en.wikipedia.org/wiki/Distance_%28graph_theory%29
http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

weight : The name of the attribute of the edges containing the length as a string.
defaultWeight : Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as length. If no
default is supplied the default would be positive Infinity so the path and hence
the eccentricity can not be calculated.

Examples

A route planner example, the absolute eccentricity of all locations.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_ABSOLUTE_ECCENTRICITY('routeplanner',	{})").toArray();

show execution results
A route planner example, the absolute eccentricity of all locations. This considers the
actual distances.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_ABSOLUTE_ECCENTRICITY("

........>	+"'routeplanner',	{},	{weight	:	'distance'})").toArray();

show execution results
A route planner example, the absolute eccentricity of all German cities regarding only
outbound paths.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_ABSOLUTE_ECCENTRICITY("

........>	+	"'routeplanner',	{},	{startVertexCollectionRestriction	:	'germanCity',	"	+

........>	"direction	:	'outbound',	weight	:	'distance'})").toArray();

show execution results
GRAPH_ECCENTRICITY

	GRAPH_ECCENTRICITY	(graphName,	options)	

The GRAPH_ECCENTRICITY function returns the normalized eccentricity of the graphs

http://en.wikipedia.org/wiki/Distance_%28graph_theory%29

vertices

The complexity of the function is described here.

Parameters

graphName : The name of the graph as a string.
options (optional) : An object containing the following options:

direction : The direction of the edges as a string. Possible values are outbound,
inbound and any (default).
algorithm : The algorithm to calculate the shortest paths as a string. Possible
values are Floyd-Warshall (default) and Dijkstra.
weight : The name of the attribute of the edges containing the length as a string.
defaultWeight : Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as length. If no
default is supplied the default would be positive Infinity so the path and hence
the eccentricity can not be calculated.

Examples

A route planner example, the eccentricity of all locations.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_ECCENTRICITY('routeplanner')").toArray();

show execution results
A route planner example, the eccentricity of all locations. This considers the actual
distances.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_ECCENTRICITY('routeplanner',	{weight	:	'distance'})"

........>).toArray();

show execution results
GRAPH_ABSOLUTE_CLOSENESS

	GRAPH_ABSOLUTE_CLOSENESS	(graphName,	vertexExample,	options)	

http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

The GRAPH_ABSOLUTE_CLOSENESS function returns the closeness of the vertices
defined by the examples.

The complexity of the function is described here.

Parameters

graphName : The name of the graph as a string.
vertexExample : An example for the desired vertices (see example).
options : An object containing the following options:

direction : The direction of the edges. Possible values are outbound, inbound
and any (default).
edgeCollectionRestriction : One or multiple edge collection names. Only edges
from these collections will be considered for the path.
startVertexCollectionRestriction : One or multiple vertex collection names. Only
vertices from these collections will be considered as start vertex of a path.
endVertexCollectionRestriction : One or multiple vertex collection names. Only
vertices from these collections will be considered as end vertex of a path.
edgeExamples : A filter example for the edges in the shortest paths (see
example).
algorithm : The algorithm to calculate the shortest paths. Possible values are
Floyd-Warshall (default) and Dijkstra.
weight : The name of the attribute of the edges containing the length.
defaultWeight : Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as length. If no
default is supplied the default would be positive Infinity so the path and hence
the eccentricity can not be calculated.

Examples

A route planner example, the absolute closeness of all locations.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_ABSOLUTE_CLOSENESS('routeplanner',	{})").toArray();

show execution results
A route planner example, the absolute closeness of all locations. This considers the
actual distances.

http://en.wikipedia.org/wiki/Centrality#Closeness_centrality
http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_ABSOLUTE_CLOSENESS("

........>	+"'routeplanner',	{},	{weight	:	'distance'})").toArray();

show execution results
A route planner example, the absolute closeness of all German cities regarding only
outbound paths.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_ABSOLUTE_CLOSENESS("

........>	+	"'routeplanner',	{},	{startVertexCollectionRestriction	:	'germanCity',	"	+

........>	"direction	:	'outbound',	weight	:	'distance'})").toArray();

show execution results
GRAPH_CLOSENESS

	GRAPH_CLOSENESS	(graphName,	options)	

The GRAPH_CLOSENESS function returns the normalized closeness of graphs vertices.

The complexity of the function is described here.

Parameters

graphName : The name of the graph as a string.
options : An object containing the following options:

direction : The direction of the edges. Possible values are outbound, inbound
and any (default).
algorithm : The algorithm to calculate the shortest paths. Possible values are
Floyd-Warshall (default) and Dijkstra.
weight : The name of the attribute of the edges containing the length.
defaultWeight : Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as length. If no
default is supplied the default would be positive Infinity so the path and hence
the eccentricity can not be calculated.

Examples

A route planner example, the closeness of all locations.

http://en.wikipedia.org/wiki/Centrality#Closeness_centrality
http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_CLOSENESS('routeplanner')").toArray();

show execution results
A route planner example, the closeness of all locations. This considers the actual
distances.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_CLOSENESS("

........>	+"'routeplanner',	{weight	:	'distance'})").toArray();

show execution results
A route planner example, the absolute closeness of all cities regarding only outbound
paths.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_CLOSENESS("

........>	+	"'routeplanner',{direction	:	'outbound',	weight	:	'distance'})"

........>).toArray();

show execution results
GRAPH_ABSOLUTE_BETWEENNESS

	GRAPH_ABSOLUTE_BETWEENNESS	(graphName,	vertexExample,	options)	

The GRAPH_ABSOLUTE_BETWEENNESS function returns the betweenness of all
vertices in the graph.

The complexity of the function is described here.

graphName : The name of the graph as a string.
options : An object containing the following options:

direction : The direction of the edges. Possible values are outbound, inbound
and any (default).
weight : The name of the attribute of the edges containing the length.
defaultWeight : Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as length. If no
default is supplied the default would be positive Infinity so the path and hence

http://en.wikipedia.org/wiki/Betweenness_centrality

the betweenness can not be calculated.

Examples

A route planner example, the absolute betweenness of all locations.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_ABSOLUTE_BETWEENNESS('routeplanner',	{})").toArray();

show execution results
A route planner example, the absolute betweenness of all locations. This considers the
actual distances.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_ABSOLUTE_BETWEENNESS("

........>	+"'routeplanner',	{weight	:	'distance'})").toArray();

show execution results
A route planner example, the absolute closeness regarding only outbound paths.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_ABSOLUTE_BETWEENNESS("

........>	+	"'routeplanner',	{direction	:	'outbound',	weight	:	'distance'})"

........>).toArray();

show execution results
GRAPH_BETWEENNESS

	GRAPH_BETWEENNESS	(graphName,	options)	

The GRAPH_BETWEENNESS function returns the betweenness of graphs vertices.

The complexity of the function is described here.

Parameters

graphName : The name of the graph as a string.

http://en.wikipedia.org/wiki/Betweenness_centrality

options : An object containing the following options:
direction : The direction of the edges. Possible values are outbound, inbound
and any (default).
weight : The name of the attribute of the edges containing the length.
defaultWeight : Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as length. If no
default is supplied the default would be positive Infinity so the path and hence
the eccentricity can not be calculated.

Examples

A route planner example, the betweenness of all locations.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_BETWEENNESS('routeplanner')").toArray();

show execution results
A route planner example, the betweenness of all locations. This considers the actual
distances.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_BETWEENNESS('routeplanner',	{weight	:	'distance'})").toArray();

show execution results
A route planner example, the betweenness regarding only outbound paths.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_BETWEENNESS("

........>	+	"'routeplanner',	{direction	:	'outbound',	weight	:	'distance'})").toArray();

show execution results
GRAPH_RADIUS

	GRAPH_RADIUS	(graphName,	options)	

The GRAPH_RADIUS function returns the radius of a graph.

The complexity of the function is described here.

graphName : The name of the graph as a string.
options : An object containing the following options:

direction : The direction of the edges. Possible values are outbound, inbound
and any (default).
algorithm : The algorithm to calculate the shortest paths as a string. Possible
values are Floyd-Warshall (default) and Dijkstra.
weight : The name of the attribute of the edges containing the length.
defaultWeight : Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as length. If no
default is supplied the default would be positive Infinity so the path and hence
the eccentricity can not be calculated.

Examples

A route planner example, the radius of the graph.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_RADIUS('routeplanner')").toArray();

[

		1	

]

A route planner example, the radius of the graph. This considers the actual distances.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_RADIUS('routeplanner',	{weight	:	'distance'})").toArray();

[

		850	

]

A route planner example, the radius of the graph regarding only outbound paths.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_RADIUS("

........>	+	"'routeplanner',	{direction	:	'outbound',	weight	:	'distance'})"

http://en.wikipedia.org/wiki/Eccentricity_%28graph_theory%29
http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

........>).toArray();

[

		550	

]

GRAPH_DIAMETER

	GRAPH_DIAMETER	(graphName,	options)	

The GRAPH_DIAMETER function returns the diameter of a graph.

The complexity of the function is described here.

Parameters

graphName : The name of the graph as a string.
options : An object containing the following options:

direction : The direction of the edges. Possible values are outbound, inbound
and any (default).
algorithm : The algorithm to calculate the shortest paths as a string. Possible
values are Floyd-Warshall (default) and Dijkstra.
weight : The name of the attribute of the edges containing the length.
defaultWeight : Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as length. If no
default is supplied the default would be positive Infinity so the path and hence
the eccentricity can not be calculated.

Examples

A route planner example, the diameter of the graph.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_DIAMETER('routeplanner')").toArray();

[

		1	

]

A route planner example, the diameter of the graph. This considers the actual distances.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_DIAMETER('routeplanner',	{weight	:	'distance'})").toArray();

http://en.wikipedia.org/wiki/Eccentricity_%28graph_theory%29
http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

[

		1200	

]

A route planner example, the diameter of the graph regarding only outbound paths.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_DIAMETER("

........>	+	"'routeplanner',	{direction	:	'outbound',	weight	:	'distance'})"

........>).toArray();

[

		1200	

]

Subqueries

Wherever an expression is allowed in AQL, a subquery can be placed. A subquery is a
query part that can introduce its own local variables without affecting variables and
values in its outer scope(s).

It is required that subqueries be put inside parentheses "(" and ")" to explicitly mark their
start and end points:

FOR	u	IN	users

		LET	recommendations	=	(

FOR	r	IN	recommendations

		FILTER	u.id	==	r.userId

		SORT	u.rank	DESC

		LIMIT	10

		RETURN	r

)

		RETURN	{	"user"	:	u,	"recommendations"	:	recommendations	}

FOR	u	IN	users

		COLLECT	city	=	u.city	INTO	g

		RETURN	{	"city"	:	city,	"numUsers"	:	LENGTH(g),	"maxRating":	MAX(

FOR	r	IN	g	

		RETURN	r.user.rating

)	}

Subqueries might also include other subqueries themselves.

Variable expansion

In order to access a named attribute from all elements in a list easily, AQL offers the
shortcut operator [\]* for variable expansion.

Using the [\] operator with a variable will iterate over all elements in the variable thus
allowing to access a particular attribute of each element. It is required that the expanded
variable is a list. The result of the [*]* operator is again a list.

FOR	u	IN	users

		RETURN	{	"user"	:	u,	"friendNames"	:	u.friends[*].name	}

Advanced features

In the above example, the attribute name is accessed for each element in the list
u.friends. The result is a flat list of friend names, made available as the attribute
friendNames.

AQL comes with a built-in set of functions, but it is no full-feature programming language.

To add missing functionality or to simplify queries, users may add own functions to AQL.
These functions can be written in Javascript, and must be registered via an API.

In order to avoid conflicts with existing or future built-in function names, all user functions
must be put into separate namespaces. Invoking a user functions is then possible by
referring to the fully-qualified function name, which includes the namespace, too.

Extending AQL with User Functions

The :: symbol is used inside AQL as the namespace separator. Using the namespace
separator, users can create a multi-level hierarchy of function groups if required.

Examples:

RETURN	myfunctions::myfunc()

RETURN	myfunctions::math::random()

Note: As all function names in AQL, user function names are also case-insensitive.

Built-in AQL functions reside in the namespace _aql, which is also the default namespace
to look in if an unqualified function name is found. Adding user functions to the _aql
namespace is disallowed and will fail.

User functions can take any number of input arguments and should provide one result.
They should be kept purely functional and thus free of side effects and state.

Especially it is unsupported to modify any global variables, or to change data of a
collection from inside an AQL user function.

User function code is late-bound, and may thus not rely on any variables that existed at
the time of declaration. If user function code requires access to any external data, it must
take care to set up the data by itself.

User functions must only return primitive types (i.e. null, boolean values, numeric values,
string values) or aggregate types (lists or documents) composed of these types.
Returning any other Javascript object type from a user function may lead to undefined
behavior and should be avoided.

Internally, user functions are stored in a system collection named _aqlfunctions. That
means that by default they are excluded from dumps created with arangodump. To
include AQL user functions in a dump, the dump should be started with the option --
include-system-collections true.

Conventions

AQL user functions can be registered using the aqlfunctions object as follows:

var	aqlfunctions	=	require("org/arangodb/aql/functions");

To register a function, the fully qualified function name plus the function code must be
specified.

Register

	aqlfunctions.register(name,	code,	isDeterministic)	

Registers an AQL user function, identified by a fully qualified function name. The function
code in code must be specified as a Javascript function or a string representation of a
Javascript function.

If a function identified by name already exists, the previous function definition will be
updated.

The isDeterministic attribute can be used to specify whether the function results are fully
deterministic (i.e. depend solely on the input and are the same for repeated calls with the
same input values). It is not used at the moment but may be used for optimizations later.

The registered function is stored in the selected database's system collection
_aqlfunctions.

Examples

		require("org/arangodb/aql/functions").register("myfunctions::temperature::celsiustofahrenheit"

		function	(celsius)	{

				return	celsius	*	1.8	+	32;

		});

Unregister

Registering and Unregistering User
Functions

	aqlfunctions.unregister(name)	

Unregisters an existing AQL user function, identified by the fully qualified function name.

Trying to unregister a function that does not exist will result in an exception.

Examples

		require("org/arangodb/aql/functions").unregister("myfunctions::temperature::celsiustofahrenheit"

Unregister Group

	aqlfunctions.unregisterGroup(prefix)	

Unregisters a group of AQL user function, identified by a common function group prefix.

This will return the number of functions unregistered.

Examples

		require("org/arangodb/aql/functions").unregisterGroup("myfunctions::temperature");

		require("org/arangodb/aql/functions").unregisterGroup("myfunctions");

To Array

	aqlfunctions.toArray()	

Returns all previously registered AQL user functions, with their fully qualified names and
function code.

The result may optionally be restricted to a specified group of functions by specifying a
group prefix:

	aqlfunctions.toArray(prefix)	

Examples

To list all available user functions:

		require("org/arangodb/aql/functions").toArray();

To list all available user functions in the myfunctions namespace:

		require("org/arangodb/aql/functions").toArray("myfunctions");

To list all available user functions in the myfunctions::temperature namespace:

		require("org/arangodb/aql/functions").toArray("myfunctions::temperature");

This page contains some examples how to write queries in AQL. For better
understandability the query results are also included directly below each query.

Following is a query that returns a string value. The result string is contained in a list
because the result of every valid query is a list:

RETURN	"this	will	be	returned"

[

		"this	will	be	returned"	

]

Here is a query that creates the cross products of two lists and runs a projection on it,
using a few of AQL's built-in functions:

FOR	year	in	[2011,	2012,	2013]

		FOR	quarter	IN	[1,	2,	3,	4]

				RETURN	{	

						"y"	:	"year",	

						"q"	:	quarter,	

						"nice"	:	CONCAT(TO_STRING(quarter),	"/",	TO_STRING(year))	

				}

[

		{	"y"	:	"year",	"q"	:	1,	"nice"	:	"1/2011"	},	

		{	"y"	:	"year",	"q"	:	2,	"nice"	:	"2/2011"	},	

		{	"y"	:	"year",	"q"	:	3,	"nice"	:	"3/2011"	},	

		{	"y"	:	"year",	"q"	:	4,	"nice"	:	"4/2011"	},	

		{	"y"	:	"year",	"q"	:	1,	"nice"	:	"1/2012"	},	

		{	"y"	:	"year",	"q"	:	2,	"nice"	:	"2/2012"	},	

		{	"y"	:	"year",	"q"	:	3,	"nice"	:	"3/2012"	},	

		{	"y"	:	"year",	"q"	:	4,	"nice"	:	"4/2012"	},	

		{	"y"	:	"year",	"q"	:	1,	"nice"	:	"1/2013"	},	

		{	"y"	:	"year",	"q"	:	2,	"nice"	:	"2/2013"	},	

		{	"y"	:	"year",	"q"	:	3,	"nice"	:	"3/2013"	},	

		{	"y"	:	"year",	"q"	:	4,	"nice"	:	"4/2013"	}	

]

AQL Examples

Simple queries

Normally you would want to run queries on data stored in collections. This section will
provide several examples for that.

Example data

Some of the following example queries are executed on a collection users with the
following initial data:

[

		{	"id"	:	100,	"name"	:	"John",	"age"	:	37,	"active"	:	true,	"gender"	:	"m"	},

		{	"id"	:	101,	"name"	:	"Fred",	"age"	:	36,	"active"	:	true,	"gender"	:	"m"	},

		{	"id"	:	102,	"name"	:	"Jacob",	"age"	:	35,	"active"	:	false,	"gender"	:	"m"	},

		{	"id"	:	103,	"name"	:	"Ethan",	"age"	:	34,	"active"	:	false,	"gender"	:	"m"	},

		{	"id"	:	104,	"name"	:	"Michael",	"age"	:	33,	"active"	:	true,	"gender"	:	"m"	},

		{	"id"	:	105,	"name"	:	"Alexander",	"age"	:	32,	"active"	:	true,	"gender"	:	"m"	},

		{	"id"	:	106,	"name"	:	"Daniel",	"age"	:	31,	"active"	:	true,	"gender"	:	"m"	},

		{	"id"	:	107,	"name"	:	"Anthony",	"age"	:	30,	"active"	:	true,	"gender"	:	"m"	},

		{	"id"	:	108,	"name"	:	"Jim",	"age"	:	29,	"active"	:	true,	"gender"	:	"m"	},

		{	"id"	:	109,	"name"	:	"Diego",	"age"	:	28,	"active"	:	true,	"gender"	:	"m"	},

		{	"id"	:	200,	"name"	:	"Sophia",	"age"	:	37,	"active"	:	true,	"gender"	:	"f"	},

		{	"id"	:	201,	"name"	:	"Emma",	"age"	:	36,		"active"	:	true,	"gender"	:	"f"	},

		{	"id"	:	202,	"name"	:	"Olivia",	"age"	:	35,	"active"	:	false,	"gender"	:	"f"	},

		{	"id"	:	203,	"name"	:	"Madison",	"age"	:	34,	"active"	:	true,	"gender":	"f"	},

		{	"id"	:	204,	"name"	:	"Chloe",	"age"	:	33,	"active"	:	true,	"gender"	:	"f"	},

		{	"id"	:	205,	"name"	:	"Eva",	"age"	:	32,	"active"	:	false,	"gender"	:	"f"	},

		{	"id"	:	206,	"name"	:	"Abigail",	"age"	:	31,	"active"	:	true,	"gender"	:	"f"	},

		{	"id"	:	207,	"name"	:	"Isabella",	"age"	:	30,	"active"	:	true,	"gender"	:	"f"	},

		{	"id"	:	208,	"name"	:	"Mary",	"age"	:	29,	"active"	:	true,	"gender"	:	"f"	},

		{	"id"	:	209,	"name"	:	"Mariah",	"age"	:	28,	"active"	:	true,	"gender"	:	"f"	}

]

For some of the examples, we'll also use a collection relations to store relationships
between users. The example data for relations are as follows:

[

		{	"from"	:	209,	"to"	:	205,	"type"	:	"friend"	},

		{	"from"	:	206,	"to"	:	108,	"type"	:	"friend"	},

		{	"from"	:	202,	"to"	:	204,	"type"	:	"friend"	},

		{	"from"	:	200,	"to"	:	100,	"type"	:	"friend"	},

		{	"from"	:	205,	"to"	:	101,	"type"	:	"friend"	},

		{	"from"	:	209,	"to"	:	203,	"type"	:	"friend"	},

		{	"from"	:	200,	"to"	:	203,	"type"	:	"friend"	},

		{	"from"	:	100,	"to"	:	208,	"type"	:	"friend"	},

		{	"from"	:	101,	"to"	:	209,	"type"	:	"friend"	},

Collection-based queries

		{	"from"	:	206,	"to"	:	102,	"type"	:	"friend"	},

		{	"from"	:	104,	"to"	:	100,	"type"	:	"friend"	},

		{	"from"	:	104,	"to"	:	108,	"type"	:	"friend"	},

		{	"from"	:	108,	"to"	:	209,	"type"	:	"friend"	},

		{	"from"	:	206,	"to"	:	106,	"type"	:	"friend"	},

		{	"from"	:	204,	"to"	:	105,	"type"	:	"friend"	},

		{	"from"	:	208,	"to"	:	207,	"type"	:	"friend"	},

		{	"from"	:	102,	"to"	:	108,	"type"	:	"friend"	},

		{	"from"	:	207,	"to"	:	203,	"type"	:	"friend"	},

		{	"from"	:	203,	"to"	:	106,	"type"	:	"friend"	},

		{	"from"	:	202,	"to"	:	108,	"type"	:	"friend"	},

		{	"from"	:	201,	"to"	:	203,	"type"	:	"friend"	},

		{	"from"	:	105,	"to"	:	100,	"type"	:	"friend"	},

		{	"from"	:	100,	"to"	:	109,	"type"	:	"friend"	},

		{	"from"	:	207,	"to"	:	109,	"type"	:	"friend"	},

		{	"from"	:	103,	"to"	:	203,	"type"	:	"friend"	},

		{	"from"	:	208,	"to"	:	104,	"type"	:	"friend"	},

		{	"from"	:	105,	"to"	:	104,	"type"	:	"friend"	},

		{	"from"	:	103,	"to"	:	208,	"type"	:	"friend"	},

		{	"from"	:	203,	"to"	:	107,	"type"	:	"boyfriend"	},

		{	"from"	:	107,	"to"	:	203,	"type"	:	"girlfriend"	},

		{	"from"	:	208,	"to"	:	109,	"type"	:	"boyfriend"	},

		{	"from"	:	109,	"to"	:	208,	"type"	:	"girlfriend"	},

		{	"from"	:	106,	"to"	:	205,	"type"	:	"girlfriend"	},

		{	"from"	:	205,	"to"	:	106,	"type"	:	"boyfriend"	},

		{	"from"	:	103,	"to"	:	209,	"type"	:	"girlfriend"	},

		{	"from"	:	209,	"to"	:	103,	"type"	:	"boyfriend"	},

		{	"from"	:	201,	"to"	:	102,	"type"	:	"boyfriend"	},

		{	"from"	:	102,	"to"	:	201,	"type"	:	"girlfriend"	},

		{	"from"	:	206,	"to"	:	100,	"type"	:	"boyfriend"	},

		{	"from"	:	100,	"to"	:	206,	"type"	:	"girlfriend"	}

]

Things to consider when running queries on collections

Note that all documents created in the two collections will automatically get the following
server-generated attributes:

_id: A unique id, consisting of collection name and a server-side sequence value
_key: The server sequence value
_rev: The document's revision id

Whenever you run queries on the documents in the two collections, don't be surprised if
these additional attributes are returned as well.

Please also note that with real-world data, you might want to create additional indexes on
the data (left out here for brevity). Adding indexes on attributes that are used in FILTER
statements may considerably speed up queries. Furthermore, instead of using attributes
such as id, from and to, you might want to use the built-in _id, _from and _to attributes.
Finally, edge collections provide a nice way of establishing references / links between

documents. These features have been left out here for brevity as well.

The following operations can be used to modify data of multiple documents with one
query. This is superior to fetching and updating the documents individually with multiple
queries. However, if only a single document needs to be modified, ArangoDB's
specialized data-modification operations for single documents might execute faster.

Updating documents

To update existing documents, we can either use the UPDATE or the REPLACE
operation. UPDATE updates only the specified attributes in the found documents, and
REPLACE completely replaces the found documents with the specified values.

We'll start with an UPDATE query that rewrites the gender attribute in all documents:

FOR	u	IN	users

		UPDATE	u	WITH	{	gender:	TRANSLATE(u.gender,	{	m:	'male',	f:	'female'	})	}	IN	users

To add new attributes to existing documents, we can also use an UPDATE query. The
following query adds an attribute numberOfLogins for all users with status active:

FOR	u	IN	users

		FILTER	u.active	==	true

		UPDATE	u	WITH	{	numberOfLogins:	0	}	IN	users

Existing attributes can also be updated based on their previous value:

FOR	u	IN	users

		FILTER	u.active	==	true

		UPDATE	u	WITH	{	numberOfLogins:	u.numberOfLogins	+	1	}	IN	users

The above query will only work if there was already a numberOfLogins attribute present
in the document. If it is unsure whether there is a numberOfLogins attribute in the
document, the increase must be made conditional:

FOR	u	IN	users

Data-modification queries

		FILTER	u.active	==	true

		UPDATE	u	WITH	{	

				numberOfLogins:	HAS(u,	'numberOfLogins')	?	u.numberOfLogins	+	1	:	1	

		}	IN	users

Updates of multiple attributes can be combined in a single query:

FOR	u	IN	users

		FILTER	u.active	==	true

		UPDATE	u	WITH	{	

				lastLogin:	DATE_NOW(),	

				numberOfLogins:	HAS(u,	'numberOfLogins')	?	u.numberOfLogins	+	1	:	1	

		}	IN	users

Note than an update query might fail during execution, for example because a document
to be updated does not exist. In this case, the query will abort at the first error. In single-
server mode, all modifications done by the query will be rolled back as if they never
happened.

Replacing documents

To not just partially update, but completely replace existing documents, use the
REPLACE operation. The following query replaces all documents in the collection backup
with the documents found in collection users. Documents common to both collections will
be replaced. All other documents will remain unchanged. Documents are compared using
their _key attributes:

FOR	u	IN	users

		REPLACE	u	IN	backup

The above query will fail if there are documents in collection users that are not in
collection backup yet. In this case, the query would attempt to replace documents that do
not exist. If such case is detected while executing the query, the query will abort. In
single-server mode, all changes made by the query will also be rolled back.

To make the query succeed for such case, use the ignoreErrors query option:

FOR	u	IN	users

		REPLACE	u	IN	backup	OPTIONS	{	ignoreErrors:	true	}

Removing documents

Deleting documents can be achieved with the REMOVE operation. To remove all users
within a certain age range, we can use the following query:

FOR	u	IN	users

		FILTER	u.active	==	true	&&	u.age	>=	35	&&	u.age	<=	37

		REMOVE	u	IN	users

Creating documents

To create new documents, there is the INSERT operation. It can also be used to
generate copies of existing documents from other collections, or to create synthetic
documents (e.g. for testing purposes). The following query creates 1000 test users in
collection users with some attributes set:

FOR	i	IN	1..1000

		INSERT	{	

				id:	100000	+	i,	

				age:	18	+	FLOOR(RAND()	*	25),	

				name:	CONCAT('test',	TO_STRING(i)),	

				active:	false,	

				gender:	i	%	2	==	0	?	'male'	:	'female'	

		}	IN	users

Copying data from one collection into another

To copy data from one collection into another, an INSERT operation can be used:

FOR	u	IN	users

		INSERT	u	IN	backup

This will copy over all documents from collection users into collection backup. Note that
both collections must already exist when the query is executed. The query might fail if
backup already contains documents, as executing the insert might attempt to insert the
same document (identified by _key attribute) again. This will trigger a unique key
constraint violation and abort the query. In single-server mode, all changes made by the
query will also be rolled back. To make such copy operation work in all cases, the target
collection can be emptied before, using a REMOVE query.

Handling errors

In some cases it might be desirable to continue execution of a query even in the face of
errors (e.g. "document not found"). To continue execution of a query in case of errors,
there is the ignoreErrors option.

To use it, place an OPTIONS keyword directly after the data modification part of the
query, e.g.

FOR	u	IN	users

		REPLACE	u	IN	backup	OPTIONS	{	ignoreErrors:	true	}

This will continue execution of the query even if errors occur during the REPLACE
operation. It works similar for UPDATE, INSERT, and REMOVE.

Returning unaltered documents

To return three complete documents from collection users, the following query can be
used:

FOR	u	IN	users	

		LIMIT	0,	3

		RETURN	u

[

		{	

				"_id"	:	"users/229886047207520",	

				"_rev"	:	"229886047207520",	

				"_key"	:	"229886047207520",	

				"active"	:	true,	

				"id"	:	206,	

				"age"	:	31,	

				"gender"	:	"f",	

				"name"	:	"Abigail"	

		},	

		{	

				"_id"	:	"users/229886045175904",	

				"_rev"	:	"229886045175904",	

				"_key"	:	"229886045175904",	

				"active"	:	true,	

				"id"	:	101,	

				"age"	:	36,	

				"name"	:	"Fred",	

				"gender"	:	"m"	

		},	

		{	

				"_id"	:	"users/229886047469664",	

				"_rev"	:	"229886047469664",	

				"_key"	:	"229886047469664",	

				"active"	:	true,	

				"id"	:	208,	

				"age"	:	29,	

				"name"	:	"Mary",	

				"gender"	:	"f"	

		}

]

Note that there is a LIMIT clause but no SORT clause. In this case it is not guaranteed
which of the user documents are returned. Effectively the document return order is
unspecified if no SORT clause is used, and you should not rely on the order in such
queries.

Projections and Filters

Projections

To return a projection from the collection users use a modified RETURN instruction:

FOR	u	IN	users	

		LIMIT	0,	3

		RETURN	{	

				"user"	:	{	

						"isActive"	:	u.active	?	"yes"	:	"no",	

						"name"	:	u.name	

				}	

		}

[

		{	

				"user"	:	{	

						"isActive"	:	"yes",	

						"name"	:	"John"	

				}	

		},	

		{	

				"user"	:	{	

						"isActive"	:	"yes",	

						"name"	:	"Anthony"	

				}	

		},	

		{	

				"user"	:	{	

						"isActive"	:	"yes",	

						"name"	:	"Fred"	

				}	

		}

]

Filters

To return a filtered projection from collection users, you can use the FILTER keyword.
Additionally, a SORT clause is used to have the result returned in a specific order:

FOR	u	IN	users	

		FILTER	u.active	==	true	&&	u.age	>=	30

		SORT	u.age	DESC

		LIMIT	0,	5

		RETURN	{	

				"age"	:	u.age,	

				"name"	:	u.name	

		}

[

		{	

				"age"	:	37,	

						"name"	:	"Sophia"	

		},	

		{	

				"age"	:	37,	

				"name"	:	"John"	

		},	

		{	

				"age"	:	36,	

				"name"	:	"Emma"	

		},	

		{	

				"age"	:	36,	

				"name"	:	"Fred"	

		},	

		{	

				"age"	:	34,	

				"name"	:	"Madison"	

		}	

]

So far we have only dealt with one collection (users) at a time. We also have a collection
relations that stores relationships between users. We will now use this extra collection to
create a result from two collections.

First of all, we'll query a few users together with their friends' ids. For that, we'll use all
relations that have a value of friend in their type attribute. Relationships are established
by using the from and to attributes in the relations collection, which point to the id values
in the users collection.

Join tuples

We'll start with a SQL-ish result set and return each tuple (user name, friend id)
separately. The AQL query to generate such result is:

FOR	u	IN	users	

		FILTER	u.active	==	true	

		LIMIT	0,	4	

		FOR	f	IN	relations	

				FILTER	f.type	==	"friend"	&&	f.from	==	u.id	

				RETURN	{	

						"user"	:	u.name,	

						"friendId"	:	f.to	

				}

[

		{	

				"user"	:	"Abigail",	

				"friendId"	:	108	

		},	

		{	

				"user"	:	"Abigail",	

				"friendId"	:	102	

		},	

		{	

				"user"	:	"Abigail",	

				"friendId"	:	106	

		},	

		{	

				"user"	:	"Fred",	

				"friendId"	:	209	

		},	

		{	

				"user"	:	"Mary",	

				"friendId"	:	207	

		},	

		{	

Joins

				"user"	:	"Mary",	

				"friendId"	:	104	

		},	

		{	

				"user"	:	"Mariah",	

				"friendId"	:	203	

		},	

		{	

				"user"	:	"Mariah",	

				"friendId"	:	205	

		}	

]

Horizontal lists

Note that in the above result, a user might be returned multiple times. This is the SQL
way of returning data. If this is not desired, the friends' ids of each user can be returned in
a horizontal list. This will return each user at most once.

The AQL query for doing so is:

FOR	u	IN	users	

		FILTER	u.active	==	true	LIMIT	0,	4	

		RETURN	{	

				"user"	:	u.name,	

				"friendIds"	:	(

						FOR	f	IN	relations	

								FILTER	f.from	==	u.id	&&	f.type	==	"friend"

								RETURN	f.to

)

		}

[

		{	

				"user"	:	"Abigail",	

				"friendIds"	:	[

						108,	

						102,	

						106	

]	

		},	

		{	

				"user"	:	"Fred",	

				"friendIds"	:	[

						209	

]	

		},	

		{	

				"user"	:	"Mary",	

				"friendIds"	:	[

						207,	

						104	

]	

		},	

		{	

				"user"	:	"Mariah",	

				"friendIds"	:	[

						203,	

						205	

]	

		}	

]

In this query we are still iterating over the users in the users collection and for each
matching user we are executing a sub-query to create the matching list of related users.

Self joins

To not only return friend ids but also the names of friends, we could "join" the users
collection once more (something like a "self join"):

FOR	u	IN	users	

		FILTER	u.active	==	true	

		LIMIT	0,	4	

		RETURN	{	

				"user"	:	u.name,	

				"friendIds"	:	(

						FOR	f	IN	relations	

								FILTER	f.from	==	u.id	&&	f.type	==	"friend"	

								FOR	u2	IN	users	

										FILTER	f.to	==	u2.id	

										RETURN	u2.name

)	

		}				

[

		{	

				"user"	:	"Abigail",	

				"friendIds"	:	[

						"Jim",	

						"Jacob",	

						"Daniel"	

]	

		},	

		{	

				"user"	:	"Fred",	

				"friendIds"	:	[

						"Mariah"	

]	

		},	

		{	

				"user"	:	"Mary",	

				"friendIds"	:	[

						"Isabella",	

						"Michael"	

]	

		},	

		{	

				"user"	:	"Mariah",	

				"friendIds"	:	[

						"Madison",	

						"Eva"	

]	

		}	

]

To group results by arbitrary criteria, AQL provides the COLLECT keyword. COLLECT
will perform a grouping, but no aggregation. Aggregation can still be added in the query if
required.

Grouping by criteria

To group users by age, and result the names of the users with the highest ages, we'll
issue a query like this:

FOR	u	IN	users	

		FILTER	u.active	==	true	

		COLLECT	age	=	u.age	INTO	usersByAge	

		SORT	age	DESC	LIMIT	0,	5	

		RETURN	{	

				"age"	:	age,	

				"users"	:	usersByAge[*].u.name	

		}

[

		{	

				"age"	:	37,	

				"users"	:	[

						"John",	

						"Sophia"	

]	

		},	

		{	

				"age"	:	36,	

				"users"	:	[

						"Fred",	

						"Emma"	

]	

		},	

		{	

				"age"	:	34,	

				"users"	:	[

						"Madison"	

]	

		},	

		{	

				"age"	:	33,	

				"users"	:	[

						"Chloe",	

						"Michael"	

]	

		},	

		{	

				"age"	:	32,	

Grouping

				"users"	:	[

						"Alexander"	

]	

		}	

]

The query will put all users together by their age attribute. There will be one result
document per distinct age value (let aside the LIMIT). For each group, we have access to
the matching document via the usersByAge variable introduced in the COLLECT
statement.

list expander

The usersByAge variable contains the full documents found, and as we're only interested
in user names, we'll use the list expander ([\]) to extract just the name* attribute of all user
documents in each group.

The [\] expander is just a handy short-cut. Instead of usersByAge[*].u.name* we could
also write:

FOR	temp	IN	usersByAge

		RETURN	temp.u.name

Grouping by multiple criteria

To group by multiple criteria, we'll use multiple arguments in the COLLECT clause. For
example, to group users by ageGroup (a derived value we need to calculate first) and
then by gender, we'll do:

FOR	u	IN	users	

		FILTER	u.active	==	true

		COLLECT	ageGroup	=	FLOOR(u.age	/	5)	*	5,	

										gender	=	u.gender	INTO	group

		SORT	ageGroup	DESC

		RETURN	{	

				"ageGroup"	:	ageGroup,	

				"gender"	:	gender	

		}

[

		{	

				"ageGroup"	:	35,	

				"gender"	:	"f"	

		},	

		{	

				"ageGroup"	:	35,	

				"gender"	:	"m"	

		},	

		{	

				"ageGroup"	:	30,	

				"gender"	:	"f"	

		},	

		{	

				"ageGroup"	:	30,	

				"gender"	:	"m"	

		},	

		{	

				"ageGroup"	:	25,	

				"gender"	:	"f"	

		},	

		{	

				"ageGroup"	:	25,	

				"gender"	:	"m"	

		}	

]

Aggregation

So far we only grouped data without aggregation. Adding aggregation is simple in AQL,
as all that needs to be done is to run an aggregate function on the list created by the
INTO clause of a COLLECT statement:

FOR	u	IN	users	

		FILTER	u.active	==	true

		COLLECT	ageGroup	=	FLOOR(u.age	/	5)	*	5,	

										gender	=	u.gender	INTO	group

		SORT	ageGroup	DESC

		RETURN	{	

				"ageGroup"	:	ageGroup,	

				"gender"	:	gender,	

				"numUsers"	:	LENGTH(group)	

		}

[

		{	

				"ageGroup"	:	35,	

				"gender"	:	"f",	

				"numUsers"	:	2	

		},	

		{	

				"ageGroup"	:	35,	

				"gender"	:	"m",	

				"numUsers"	:	2	

		},	

		{	

				"ageGroup"	:	30,	

				"gender"	:	"f",	

				"numUsers"	:	4	

		},	

		{	

				"ageGroup"	:	30,	

				"gender"	:	"m",	

				"numUsers"	:	4	

		},	

		{	

				"ageGroup"	:	25,	

				"gender"	:	"f",	

				"numUsers"	:	2	

		},	

		{	

				"ageGroup"	:	25,	

				"gender"	:	"m",	

				"numUsers"	:	2	

		}	

]

We have used the function LENGTH (returns the length of a list) here. This is the
equivalent to SQL's SELECT g, COUNT() FROM ... GROUP BY g. In addition to
LENGTH AQL also provides MAX, MIN, SUM and AVERAGE* as basic aggregation
functions.

In AQL all aggregation functions can be run on lists only. If an aggregation function is run
on anything that is not a list, an error will be occur and the query will fail.

Post-filtering aggregated data

To filter on the results of a grouping or aggregation operation (i.e. something similar to
HAVING in SQL), simply add another FILTER clause after the COLLECT statement.

For example, to get the 3 ageGroups with the most users in them:

FOR	u	IN	users	

		FILTER	u.active	==	true	

		COLLECT	ageGroup	=	FLOOR(u.age	/	5)	*	5	INTO	group	

		LET	numUsers	=	LENGTH(group)	

		FILTER	numUsers	>	2	//	group	must	contain	at	least	3	users	in	order	to	qualify	

		SORT	numUsers	DESC	

		LIMIT	0,	3	

		RETURN	{	

				"ageGroup"	:	ageGroup,	

				"numUsers"	:	numUsers,	

				"users"	:	group[*].u.name	

		}

[

		{	

				"ageGroup"	:	30,	

				"numUsers"	:	8,	

				"users"	:	[

						"Abigail",	

						"Madison",	

						"Anthony",	

						"Alexander",	

						"Isabella",	

						"Chloe",	

						"Daniel",	

						"Michael"	

]	

		},	

		{	

				"ageGroup"	:	25,	

				"numUsers"	:	4,	

				"users"	:	[

						"Mary",	

						"Mariah",	

						"Jim",	

						"Diego"	

]	

		},	

		{	

				"ageGroup"	:	35,	

				"numUsers"	:	4,	

				"users"	:	[

						"Fred",	

						"John",	

						"Emma",	

						"Sophia"	

]	

		}	

]

To increase readability, the repeated expression LENGTH(group) was put into a variable
numUsers. The FILTER on numUsers is the SQL HAVING equivalent.

This chapter describes the general-graph module. It allows you to define a graph that is
spread across several edge and document collections. This allows you to structure your
models in line with your domain and group them logically in collections giving you the
power to query them in the same graph queries. There is no need to include the
referenced collections within the query, this module will handle it for you.

A Graph consists of vertices and edges. Edges are stored as documents in edge
collections. In general a vertex is stored in a document collection. The type of edges that
are allowed within a graph is defined by edge definitions: An edge definition is a
combination of a edge collection, and the vertex collections that the edges within this
collection can connect. A graph can have an arbitrary number of edge definitions and
arbitrary many additional vertex collections.

Warning

The underlying collections of the graph are still accessible using the standard methods
for collections. However the graph module adds an additional layer on top of these
collections giving you the following guarantees:

All modifications are executed transactional
If you delete a vertex all edges will be deleted, you will never have loose ends
If you insert an edge it is checked if the edge matches the definition, your edge
collections will only contain valid edges

These guarantees are lost if you access the collections in any other way than the graph
module or AQL, so if you delete documents from your vertex collections directly, the
edges will be untouched.

Three Steps to create a graph

Create a graph

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	var	graph	=	graph_module._create("myGraph");

arangosh>	graph;

Graphs

First Steps with Graphs

[Graph	myGraph	EdgeDefinitions:	[]	VertexCollections:	[]]

Add some vertex collections

arangosh>	graph._addVertexCollection("shop");

arangosh>	graph._addVertexCollection("customer");

arangosh>	graph._addVertexCollection("pet");

arangosh>	graph;

show execution results
Define relations on the

arangosh>	var	rel	=	graph_module._relation("isCustomer",	["shop"],	["customer"]);

arangosh>	graph._extendEdgeDefinitions(rel);

arangosh>	graph;

[Graph	myGraph	EdgeDefinitions:	[

		"isCustomer:	[shop]	->	[customer]"	

]	VertexCollections:	[]]

Before we create our first graph, the philosophy of handling the graph content has to be
introduced. A graph contains of a set of edge definitions each referring to one edge
collection and defining constraints on the vertex collections used as start and end points
of the edges. Furthermore a graph can contain an arbitrary amount of vertex collections,
called orphan collections, that are not used in any edge definition but should be managed
by the graph. In order to create a non empty graph the functionality to create edge
definitions has to be introduced first:

An edge definition is a directed or undirected relation of a graph. Each graph can have
arbitrary many relations defined within the edge definitions array.

Initialize the list

Create a list of edge definitions to construct a graph.

	graph_module._edgeDefinitions(relation1,	relation2,	...,	relationN)	

The list of edge definitions of a graph can be managed by the graph module itself. This
function is the entry point for the management and will return the correct list.

Parameters

relationX: An object representing a definition of one relation in the graph

Examples

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	directed_relation	=	graph_module._relation("lives_in",	"user",	"city");

arangosh>	undirected_relation	=	graph_module._relation("knows",	"user",	"user");

arangosh>	edgedefinitions	=	graph_module._edgeDefinitions(directed_relation,	undirected_relation);

show execution results
Extend the list

Graph Management

Edge Definitions

Extend the list of edge definitions to construct a graph.

	graph_module._extendEdgeDefinitions(edgeDefinitions,	relation1,	relation2,	...,

relationN)	

In order to add more edge definitions to the graph before creating this function can be
used to add more definitions to the initial list.

Parameters

edgeDefinitions: A list of relation definition objects.

relationX: An object representing a definition of one relation in the graph

Examples

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	directed_relation	=	graph_module._relation("lives_in",	"user",	"city");

arangosh>	undirected_relation	=	graph_module._relation("knows",	"user",	"user");

arangosh>	edgedefinitions	=	graph_module._edgeDefinitions(directed_relation);

arangosh>	edgedefinitions	=	graph_module._extendEdgeDefinitions(undirected_relation);

show execution results
Undirected Relation

Define an undirected relation.

	graph_module._undirectedRelation(relationName,	vertexCollections)	

Defines an undirected relation with the name relationName using the list of
vertexCollections. This relation allows the user to store edges in any direction between
any pair of vertices within the vertexCollections.

Parameters

relationName: The name of the edge collection where the edges should be stored.
Will be created if it does not yet exist.

vertexCollections: One or a list of collection names for which connections are
allowed. Will be created if they do not exist.

Examples

To define simple relation with only one vertex collection:

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	graph_module._undirectedRelation("friend",	"user");

show execution results
To define a relation between several vertex collections:

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	graph_module._undirectedRelation("marriage",	["female",	"male"]);

show execution results
Directed Relation

Define a directed relation.

	graph_module._directedRelation(relationName,	fromVertexCollections,

toVertexCollections)	

The relationName defines the name of this relation and references to the underlying edge
collection. The fromVertexCollections is an Array of document collections holding the
start vertices. The toVertexCollections is an Array of document collections holding the
target vertices. Relations are only allowed in the direction from any collection in
fromVertexCollections to any collection in toVertexCollections.

Parameters

relationName: The name of the edge collection where the edges should be stored.
Will be created if it does not yet exist.

fromVertexCollections: One or a list of collection names. Source vertices for the
edges have to be stored in these collections. Collections will be created if they do not
exist.

toVertexCollections: One or a list of collection names. Target vertices for the edges
have to be stored in these collections. Collections will be created if they do not exist.

Examples

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	graph_module._directedRelation("has_bought",	["Customer",	"Company"],	["Groceries",	"Electronics"]);

show execution results

After having introduced edge definitions a graph can be created.

Create a graph

	graph_module._create(graphName,	edgeDefinitions,	orphanCollections)	

The creation of a graph requires the name of the graph and a definition of its edges.

For every type of edge definition a convenience method exists that can be used to create
a graph. Optionally a list of vertex collections can be added, which are not used in any
edge definition. These collections are referred to as orphan collections within this
chapter. All collections used within the creation process are created if they do not exist.

Parameters

graphName: Unique identifier of the graph

edgeDefinitions: List of relation definition objects

orphanCollections: List of additional vertex collection names

Examples

Create an empty graph, edge definitions can be added at runtime:

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	graph	=	graph_module._create("myGraph");

[Graph	myGraph	EdgeDefinitions:	[]	VertexCollections:	[]]

Create a graph with edge definitions and orphan collections:

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	graph	=	graph_module._create("myGraph",

........>	[graph_module._relation("myRelation",	["male",	"female"])],	["sessions"]);

Create a graph

[ArangoError	1935:	Invalid	number	of	arguments.	Expected:	3]

[ArangoError	1924:	graph	not	found]

Complete Example to create a graph

Example Call:

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	var	edgeDefinitions	=	graph_module._edgeDefinitions();

arangosh>	graph_module._extendEdgeDefinitions(edgeDefinitions,	graph_module._relation("friend_of",	"Customer",	"Customer"));

arangosh>	graph_module._extendEdgeDefinitions(

........>	edgeDefinitions,	graph_module._relation(

........>	"has_bought",	["Customer",	"Company"],	["Groceries",	"Electronics"]));

arangosh>	graph_module._create("myStore",	edgeDefinitions);

[Graph	myStore	EdgeDefinitions:	[

		"friend_of:	[Customer]	->	[Customer]",	

		"has_bought:	[Company,	Customer]	->	[Electronics,	Groceries]"	

]	VertexCollections:	[]]

alternative call:

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>		var	edgeDefinitions	=	graph_module._edgeDefinitions(

........>		graph_module._relation("friend_of",	["Customer"]),	graph_module._relation(

........>		"has_bought",	["Customer",	"Company"],	["Groceries",	"Electronics"]));

[ArangoError	1935:	Invalid	number	of	arguments.	Expected:	3]

arangosh>	graph_module._create("myStore",	edgeDefinitions);

[Graph	myStore	EdgeDefinitions:	[]	VertexCollections:	[]]

List available graphs

List all graphs.

	graph_module._list()	

Lists all graph names stored in this database.

Examples

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	graph_module._list();

[

		"social",	

		"routeplanner"	

]

Load a graph

Get a graph

	graph_module._graph(graphName)	

A graph can be get by its name.

Parameters

graphName: Unique identifier of the graph

Examples

Get a graph:

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	graph	=	graph_module._graph("social");

[Graph	social	EdgeDefinitions:	[

		"relation:	[female,	male]	->	[female,	male]"	

]	VertexCollections:	[]]

Remove a graph

Remove a graph

	graph_module._drop(graphName,	dropCollections)	

A graph can be dropped by its name. This will automatically drop all collections contained
in the graph as long as they are not used within other graphs. To drop the collections, the
optional parameter drop-collections can be set to true.

Parameters

graphName: Unique identifier of the graph

dropCollections: Define if collections should be dropped (default: false)

Examples

Drop a graph and keep collections:

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	graph_module._drop("social");

true

arangosh>	db._collection("female");

[ArangoCollection	322902106,	"female"	(type	document,	status	loaded)]

arangosh>	db._collection("male");

[ArangoCollection	323033178,	"male"	(type	document,	status	loaded)]

arangosh>	db._collection("relation");

[ArangoCollection	323164250,	"relation"	(type	edge,	status	loaded)]

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	graph_module._drop("social",	true);

true

arangosh>	db._collection("female");

null

arangosh>	db._collection("male");

null

arangosh>	db._collection("relation");

null

After you have created an graph its definition is not immutable. You can still add, delete
or modify edge definitions and vertex collections.

Extend the edge definitions

Add another edge definition to the graph

	graph._extendEdgeDefinitions(edgeDefinition)	

Extends the edge definitions of a graph. If an orphan collection is used in this edge
definition, it will be removed from the orphanage. If the edge collection of the edge
definition to add is already used in the graph or used in a different graph with different
from and/or to collections an error is thrown.

Parameters

edgeDefinition: The relation definition to extend the graph

Examples

Modify a graph definition during runtime

arangosh>	var	graph_module	=	require("org/arangodb/general-graph")

arangosh>	var	ed1	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	ed2	=	graph_module._relation("myEC2",	["myVC1"],	["myVC3"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[ed1]);

arangosh>	graph._extendEdgeDefinitions(ed2);

Modify an edge definition

Modify an relation definition

	graph_module._editEdgeDefinition(edgeDefinition)	

Edits one relation definition of a graph. The edge definition used as argument will replace
the existing edge definition of the graph which has the same collection. Vertex
Collections of the replaced edge definition that are not used in the new definition will
transform to an orphan. Orphans that are used in this new edge definition will be deleted
from the list of orphans. Other graphs with the same edge definition will be modified, too.

Parameters

edgeDefinition: The edge definition to replace the existing edge definition with the
same attribute collection.

Examples

arangosh>	var	graph_module	=	require("org/arangodb/general-graph")

arangosh>	var	original	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	modified	=	graph_module._relation("myEC1",	["myVC2"],	["myVC3"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[original]);

arangosh>	graph._editEdgeDefinitions(modified);

Delete an edge definition

Delete one relation definition

	graph_module._deleteEdgeDefinition(edgeCollectionName,	dropCollection)	

Deletes a relation definition defined by the edge collection of a graph. If the collections
defined in the edge definition (collection, from, to) are not used in another edge definition
of the graph, they will be moved to the orphanage.

Parameters

edgeCollectionName: Name of edge collection in the relation definition.
dropCollection: Define if the edge collection should be dropped. Default false.

Examples

Remove an edge definition but keep the edge collection:

arangosh>	var	graph_module	=	require("org/arangodb/general-graph")

arangosh>	var	ed1	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	ed2	=	graph_module._relation("myEC2",	["myVC1"],	["myVC3"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[ed1,	ed2]);

arangosh>	graph._deleteEdgeDefinition("myEC1");

arangosh>	db._collection("myEC1");

[ArangoCollection	580655194,	"myEC1"	(type	edge,	status	loaded)]

Remove an edge definition and drop the edge collection:

arangosh>	var	graph_module	=	require("org/arangodb/general-graph")

arangosh>	var	ed1	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	ed2	=	graph_module._relation("myEC2",	["myVC1"],	["myVC3"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[ed1,	ed2]);

arangosh>	graph._deleteEdgeDefinition("myEC1",	true);

arangosh>	db._collection("myEC1");

null

Extend vertex Collections

Each graph can have an arbitrary amount of vertex collections, which are not part of any
edge definition of the graph. These collections are called orphan collections. If the graph
is extended with an edge definition using one of the orphans, it will be removed from the
set of orphan collection automatically.

Add

Add a vertex collection to the graph

	graph._addVertexCollection(vertexCollectionName,	createCollection)	

Adds a vertex collection to the set of orphan collections of the graph. If the collection
does not exist, it will be created. If it is already used by any edge definition of the graph,
an error will be thrown.

Parameters

vertexCollectionName: Name of vertex collection.

createCollection: If true the collection will be created if it does not exist. Default: true.

Examples

arangosh>	var	graph_module	=	require("org/arangodb/general-graph");

arangosh>	var	ed1	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[ed1]);

arangosh>	graph._addVertexCollection("myVC3",	true);

Get

Get all orphan collections

	graph._orphanCollections()	

Returns all vertex collections of the graph that are not used in any edge definition.

Examples

arangosh>	var	graph_module	=	require("org/arangodb/general-graph")

arangosh>	var	ed1	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[ed1]);

arangosh>	graph._addVertexCollection("myVC3",	true);

arangosh>	graph._orphanCollections();

[

		"myVC3"	

]

Remove

Remove a vertex collection from the graph

	graph._removeVertexCollection(vertexCollectionName,	dropCollection)	

Removes a vertex collection from the graph. Only collections not used in any relation
definition can be removed. Optionally the collection can be deleted, if it is not used in any
other graph.

Parameters

vertexCollectionName: Name of vertex collection.

dropCollection: If true the collection will be dropped if it is not used in any other
graph. Default: false.

Examples

arangosh>	var	graph_module	=	require("org/arangodb/general-graph")

arangosh>	var	ed1	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[ed1]);

arangosh>	graph._addVertexCollection("myVC3",	true);

arangosh>	graph._addVertexCollection("myVC4",	true);

arangosh>	graph._orphanCollections();

arangosh>	graph._removeVertexCollection("myVC3");

arangosh>	graph._orphanCollections();

show execution results

Save

Create a new vertex in vertexCollectionName

	graph.vertexCollectionName.save(data)	

Parameters

data: JSON data of vertex.

Examples

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.male.save({name:	"Floyd",	_key:	"floyd"});

show execution results
Replace

Replaces the data of a vertex in collection vertexCollectionName

	graph.vertexCollectionName.replace(vertexId,	data,	options)	

Parameters

Vertex

vertexId: _id attribute of the vertex

data: JSON data of vertex.

options: See collection documentation

Examples

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.male.save({neym:	"Jon",	_key:	"john"});

arangosh>	graph.male.replace("male/john",	{name:	"John"});

show execution results
Update

Updates the data of a vertex in collection vertexCollectionName

	graph.vertexCollectionName.update(vertexId,	data,	options)	

Parameters

vertexId: _id attribute of the vertex

data: JSON data of vertex.

options: See collection documentation

Examples

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.female.save({name:	"Lynda",	_key:	"linda"});

arangosh>	graph.female.update("female/linda",	{name:	"Linda",	_key:	"linda"});

show execution results
Remove

Removes a vertex in collection vertexCollectionName

	graph.vertexCollectionName.remove(vertexId,	options)	

Additionally removes all ingoing and outgoing edges of the vertex recursively (see edge

remove).

Parameters

vertexId: _id attribute of the vertex

options: See collection documentation

Examples

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.male.save({name:	"Kermit",	_key:	"kermit"});

arangosh>	db._exists("male/kermit")

arangosh>	graph.male.remove("male/kermit")

arangosh>	db._exists("male/kermit")

show execution results

Save

Creates an edge from vertex from to vertex to in collection edgeCollectionName

	graph.edgeCollectionName.save(from,	to,	data,	options)	

Parameters

from: _id attribute of the source vertex

to: _id attribute of the target vertex

data: JSON data of the edge

options: See collection documentation

Examples

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.relation.save("male/bob",	"female/alice",	{type:	"married",	_key:	"bobAndAlice"});

Edge

show execution results
If the collections of from and to are not defined in an edge definition of the graph, the
edge will not be stored.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.relation.save("relation/aliceAndBob",	"female/alice",	{type:	"married",	_key:	"bobAndAlice"});

[ArangoError	1906:	invalid	edge	between	relation/aliceAndBob	and	female/alice.]

Replace

Replaces the data of an edge in collection edgeCollectionName

	graph.edgeCollectionName.replace(edgeId,	data,	options)	

Parameters

edgeId: _id attribute of the edge

data: JSON data of the edge

options: See collection documentation

Examples

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.relation.save("female/alice",	"female/diana",	{typo:	"nose",	_key:	"aliceAndDiana"});

arangosh>	graph.relation.replace("relation/aliceAndDiana",	{type:	"knows"});

show execution results
Update

Updates the data of an edge in collection edgeCollectionName

	graph.edgeCollectionName.update(edgeId,	data,	options)	

Parameters

edgeId: _id attribute of the edge

data: JSON data of the edge

options: See collection documentation

Examples

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.relation.save("female/alice",	"female/diana",	{type:	"knows",	_key:	"aliceAndDiana"});

arangosh>	graph.relation.update("relation/aliceAndDiana",	{type:	"quarrelled",	_key:	"aliceAndDiana"});

show execution results
Remove

Removes an edge in collection edgeCollectionName

	graph.edgeCollectionName.remove(edgeId,	options)	

If this edge is used as a vertex by another edge, the other edge will be removed
(recursively).

Parameters

edgeId: _id attribute of the edge

options: See collection documentation

Examples

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.relation.save("female/alice",	"female/diana",	{_key:	"aliceAndDiana"});

arangosh>	db._exists("relation/aliceAndDiana")

arangosh>	graph.relation.remove("relation/aliceAndDiana")

arangosh>	db._exists("relation/aliceAndDiana")

show execution results

This chapter describes various functions on a graph. A lot of these accept a vertex (or
edge) example as parameter as defined in the next section.

For many of the following functions examples can be passed in as a parameter.
Examples are used to filter the result set for objects that match the conditions. These
examples can have the following values:

null, there is no matching executed all found results are valid.
A string, only results are returned, which _id equal the value of the string
An example object, defining a set of attributes. Only results having these attributes
are matched.
A list containing example objects and/or strings. All results matching at least one of
the elements in the list are returned.

Get vertex from of an edge

Get the source vertex of an edge

	graph._fromVertex(edgeId)	

Returns the vertex defined with the attribute _from of the edge with edgeId as its _id.

Parameters

edgeId: _id attribute of the edge

Examples

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph._fromVertex("relation/aliceAndBob")

Graph Functions

Definition of examples

Get vertices from edges.

show execution results
Get vertex to of an edge

Get the target vertex of an edge

	graph._toVertex(edgeId)	

Returns the vertex defined with the attribute _to of the edge with edgeId as its _id.

Parameters

edgeId: _id attribute of the edge

Examples

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph._toVertex("relation/aliceAndBob")

show execution results

Get all neighbors of the vertices defined by the example

	graph._neighbors(vertexExample,	options)	

The function accepts an id, an example, a list of examples or even an empty example as
parameter for vertexExample. The complexity of this method is O(n*m^x) with n being
the vertices defined by the parameter vertexExamplex, m the average amount of
neighbors and x the maximal depths. Hence the default call would have a complexity of
O(n*m);

Parameters

vertexExample: See Definition of examples
options: An object defining further options. Can have the following values:

direction: The direction of the edges. Possible values are outbound, inbound
and any (default).
edgeExamples: Filter the edges, see Definition of examples
neighborExamples: Filter the neighbor vertices, see Definition of examples

_neighbors

edgeCollectionRestriction : One or a list of edge-collection names that should be
considered to be on the path.
vertexCollectionRestriction : One or a list of vertex-collection names that should
be considered on the intermediate vertex steps.
minDepth: Defines the minimal number of intermediate steps to neighbors
(default is 1).
maxDepth: Defines the maximal number of intermediate steps to neighbors
(default is 1).

Examples

A route planner example, all neighbors of capitals.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._neighbors({isCapital	:	true});

show execution results
A route planner example, all outbound neighbors of Hamburg.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._neighbors('germanCity/Hamburg',	{direction	:	'outbound',	maxDepth	:	2});

show execution results

Get all common neighbors of the vertices defined by the examples.

	graph._commonNeighbors(vertex1Example,	vertex2Examples,	optionsVertex1,

optionsVertex2)	

This function returns the intersection of graph_module._neighbors(vertex1Example,
optionsVertex1) and graph_module._neighbors(vertex2Example, optionsVertex2). For
parameter documentation see _neighbors.

The complexity of this method is O(n*m^x) with n being the maximal amount of vertices
defined by the parameters vertexExamples, m the average amount of neighbors and x

_commonNeighbors

the maximal depths. Hence the default call would have a complexity of O(n*m);

Examples

A route planner example, all common neighbors of capitals.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._commonNeighbors({isCapital	:	true},	{isCapital	:	true});

show execution results
A route planner example, all common outbound neighbors of Hamburg with any other
location which have a maximal depth of 2 :

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._commonNeighbors(

........>			'germanCity/Hamburg',

........>			{},

........>			{direction	:	'outbound',	maxDepth	:	2},

........>			{direction	:	'outbound',	maxDepth	:	2});

show execution results

Get the amount of common neighbors of the vertices defined by the examples.

	graph._countCommonNeighbors(vertex1Example,	vertex2Examples,	optionsVertex1,

optionsVertex2)	

Similar to _commonNeighbors but returns count instead of the elements.

Examples

A route planner example, all common neighbors of capitals.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._countCommonNeighbors({isCapital	:	true},	{isCapital	:	true});

_countCommonNeighbors

show execution results
A route planner example, all common outbound neighbors of Hamburg with any other
location which have a maximal depth of 2 :

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._countCommonNeighbors('germanCity/Hamburg',	{},	{direction	:	'outbound',	maxDepth	:	2},

........>	{direction	:	'outbound',	maxDepth	:	2});

show execution results

Get the vertices of the graph that share common properties.

	graph._commonProperties(vertex1Example,	vertex2Examples,	options)	

The function accepts an id, an example, a list of examples or even an empty example as
parameter for vertex1Example and vertex2Example.

The complexity of this method is O(n) with n being the maximal amount of vertices
defined by the parameters vertexExamples.

Parameters

vertex1Examples: Filter the set of source vertices, see Definition of examples

vertex2Examples: Filter the set of vertices compared to, see Definition of examples

options: An object defining further options. Can have the following values:
vertex1CollectionRestriction : One or a list of vertex-collection names that
should be searched for source vertices.
vertex2CollectionRestriction : One or a list of vertex-collection names that
should be searched for compare vertices.
ignoreProperties : One or a list of attribute names of a document that should be
ignored.

Examples

A route planner example, all locations with the same properties:

_commonProperties

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._commonProperties({},	{});

show execution results
A route planner example, all cities which share same properties except for population.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._commonProperties({},	{},	{ignoreProperties:	'population'});

show execution results

Get the amount of vertices of the graph that share common properties.

	graph._countCommonProperties(vertex1Example,	vertex2Examples,	options)	

Similar to _commonProperties but returns count instead of the objects.

Examples

A route planner example, all locations with the same properties:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._countCommonProperties({},	{});

show execution results
A route planner example, all German cities which share same properties except for
population.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._countCommonProperties({},	{},	{vertex1CollectionRestriction	:	'germanCity',

........>	vertex2CollectionRestriction	:	'germanCity'	,ignoreProperties:	'population'});

_countCommonProperties

show execution results

The _paths function returns all paths of a graph.

	graph._paths(options)	

This function determines all available paths in a graph.

The complexity of this method is O(n*n*m) with n being the amount of vertices in the
graph and m the average amount of connected edges;

Parameters

options: An object containing options, see below:
direction : The direction of the edges. Possible values are any, inbound and
outbound (default).
followCycles (optional) : If set to true the query follows cycles in the graph,
default is false.
minLength (optional) : Defines the minimal length a path must have to be
returned (default is 0).
maxLength (optional) : Defines the maximal length a path must have to be
returned (default is 10).

Examples

Return all paths of the graph "social":

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("social");

arangosh>	g._paths();

show execution results
Return all inbound paths of the graph "social" with a maximal length of 1 and a minimal
length of 2:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("social");

arangosh>	g._paths({direction	:	'inbound',	minLength	:	1,	maxLength	:		2});

_paths

show execution results

The _shortestPath function returns all shortest paths of a graph.

	graph._shortestPath(startVertexExample,	endVertexExample,	options)	

This function determines all shortest paths in a graph. The function accepts an id, an
example, a list of examples or even an empty example as parameter for start and end
vertex. If one wants to call this function to receive nearly all shortest paths for a graph the
option algorithm should be set to Floyd-Warshall to increase performance. If no algorithm
is provided in the options the function chooses the appropriate one (either Floyd-Warshall
or Dijkstra) according to its parameters. The length of a path is by default the amount of
edges from one start vertex to an end vertex. The option weight allows the user to define
an edge attribute representing the length.

The complexity of the function is described here.

Parameters

startVertexExample: An example for the desired start Vertices (see Definition of
examples).

endVertexExample: An example for the desired end Vertices (see Definition of
examples).

options: An object containing options, see below:
direction : The direction of the edges as a string. Possible values are outbound,
inbound and any (default).
edgeCollectionRestriction : One or multiple edge collection names. Only edges
from these collections will be considered for the path.
startVertexCollectionRestriction : One or multiple vertex collection names. Only
vertices from these collections will be considered as start vertex of a path.
endVertexCollectionRestriction : One or multiple vertex collection names. Only
vertices from these collections will be considered as end vertex of a path.
edgeExamples : A filter example for the edges in the shortest paths (see
example).
algorithm : The algorithm to calculate the shortest paths. If both start and end
vertex examples are empty Floyd-Warshall is used, otherwise the default is
Dijkstra

_shortestPath

http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm
http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

weight : The name of the attribute of the edges containing the length as a string.
defaultWeight : Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as length. If no
default is supplied the default would be positive Infinity so the path could not be
calculated.

Examples

A route planner example, shortest path from all german to all french cities:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	g._shortestPath({},	{},	{weight	:	'distance',	endVertexCollectionRestriction	:	'frenchCity',

........>	startVertexCollectionRestriction	:	'germanCity'});

show execution results
A route planner example, shortest path from Hamburg and Cologne to Lyon:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	g._shortestPath([{_id:	'germanCity/Cologne'},{_id:	'germanCity/Munich'}],	'frenchCity/Lyon',

........>	{weight	:	'distance'});

show execution results

The _distanceTo function returns all paths and there distance within a graph.

	graph._distanceTo(startVertexExample,	endVertexExample,	options)	

This function is a wrapper of graph._shortestPath. It does not return the actual path but
only the distance between two vertices.

Examples

A route planner example, shortest distance from all german to all french cities:

_distanceTo

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	g._distanceTo({},	{},	{weight	:	'distance',	endVertexCollectionRestriction	:	'frenchCity',

........>	startVertexCollectionRestriction	:	'germanCity'});

show execution results
A route planner example, shortest distance from Hamburg and Cologne to Lyon:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	g._distanceTo([{_id:	'germanCity/Cologne'},{_id:	'germanCity/Munich'}],	'frenchCity/Lyon',

........>	{weight	:	'distance'});

show execution results

Get the eccentricity of the vertices defined by the examples.

	graph._absoluteEccentricity(vertexExample,	options)	

The function accepts an id, an example, a list of examples or even an empty example as
parameter for vertexExample.

The complexity of the function is described here.

Parameters

vertexExample: Filter the vertices, see Definition of examples

options: An object defining further options. Can have the following values:
direction: The direction of the edges. Possible values are outbound, inbound
and any (default).
edgeCollectionRestriction : One or a list of edge-collection names that should be
considered to be on the path.
startVertexCollectionRestriction : One or a list of vertex-collection names that
should be considered for source vertices.
endVertexCollectionRestriction : One or a list of vertex-collection names that
should be considered for target vertices.

_absoluteEccentricity

http://en.wikipedia.org/wiki/Distance_%28graph_theory%29

edgeExamples: Filter the edges to be followed, see Definition of examples
algorithm: The algorithm to calculate the shortest paths, possible values are
Floyd-Warshall and Dijkstra.
weight: The name of the attribute of the edges containing the weight.
defaultWeight: Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as weight. If no
default is supplied the default would be positive infinity so the path and hence
the eccentricity can not be calculated.

Examples

A route planner example, the absolute eccentricity of all locations.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	db._query("RETURN	GRAPH_ABSOLUTE_ECCENTRICITY("

........>			+	"'routeplanner',	{})"

........>).toArray();

show execution results
A route planner example, the absolute eccentricity of all locations. This considers the
actual distances.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteEccentricity({},	{weight	:	'distance'});

show execution results
A route planner example, the absolute eccentricity of all cities regarding only outbound
paths.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteEccentricity({},	{startVertexCollectionRestriction	:	'germanCity',

........>	direction	:	'outbound',	weight	:	'distance'});

show execution results

_eccentricity

http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

Get the normalized eccentricity of the vertices defined by the examples.

	graph._eccentricity(vertexExample,	options)	

Similar to _absoluteEccentricity but returns a normalized result.

The complexity of the function is described here.

Examples

A route planner example, the eccentricity of all locations.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._eccentricity();

show execution results
A route planner example, the weighted eccentricity.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._eccentricity({weight	:	'distance'});

show execution results

Get the closeness of the vertices defined by the examples.

	graph._absoluteCloseness(vertexExample,	options)	

The function accepts an id, an example, a list of examples or even an empty example as
parameter for vertexExample.

The complexity of the function is described here.

Parameters

vertexExample: Filter the vertices, see Definition of examples

_absoluteCloseness

http://en.wikipedia.org/wiki/Distance_%28graph_theory%29
http://en.wikipedia.org/wiki/Centrality#Closeness_centrality

options: An object defining further options. Can have the following values:
direction: The direction of the edges. Possible values are outbound, inbound
and any (default).
edgeCollectionRestriction : One or a list of edge-collection names that should be
considered to be on the path.
startVertexCollectionRestriction : One or a list of vertex-collection names that
should be considered for source vertices.
endVertexCollectionRestriction : One or a list of vertex-collection names that
should be considered for target vertices.
edgeExamples: Filter the edges to be followed, see Definition of examples
algorithm: The algorithm to calculate the shortest paths, possible values are
Floyd-Warshall and Dijkstra.
weight: The name of the attribute of the edges containing the weight.
defaultWeight: Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as weight. If no
default is supplied the default would be positive infinity so the path and hence
the closeness can not be calculated.

Examples

A route planner example, the absolute closeness of all locations.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteCloseness({});

show execution results
A route planner example, the absolute closeness of all locations. This considers the
actual distances.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteCloseness({},	{weight	:	'distance'});

show execution results
A route planner example, the absolute closeness of all German Cities regarding only
outbound paths.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

arangosh>	graph._absoluteCloseness({},	{startVertexCollectionRestriction	:	'germanCity',

........>	direction	:	'outbound',	weight	:	'distance'});

show execution results

Get the normalized closeness of graphs vertices.

	graph._closeness(options)	

Similar to _absoluteCloseness but returns a normalized value.

The complexity of the function is described here.

Examples

A route planner example, the normalized closeness of all locations.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._closeness();

show execution results
A route planner example, the closeness of all locations. This considers the actual
distances.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._closeness({weight	:	'distance'});

show execution results
A route planner example, the closeness of all cities regarding only outbound paths.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._closeness({direction	:	'outbound',	weight	:	'distance'});

_closeness

http://en.wikipedia.org/wiki/Centrality#Closeness_centrality

show execution results

Get the betweenness of all vertices in the graph.

	graph._absoluteBetweenness(options)	

The complexity of the function is described here.

Parameters

options: An object defining further options. Can have the following values:
direction: The direction of the edges. Possible values are outbound, inbound
and any (default).
weight: The name of the attribute of the edges containing the weight.
defaultWeight: Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as weight. If no
default is supplied the default would be positive infinity so the path and hence
the betweeness can not be calculated.

Examples

A route planner example, the absolute betweenness of all locations.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteBetweenness({});

show execution results
A route planner example, the absolute betweenness of all locations. This considers the
actual distances.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteBetweenness({weight	:	'distance'});

show execution results
A route planner example, the absolute betweenness of all cities regarding only outbound
paths.

_absoluteBetweenness

http://en.wikipedia.org/wiki/Betweenness_centrality

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteBetweenness({direction	:	'outbound',	weight	:	'distance'});

show execution results

Get the normalized betweenness of graphs vertices.

	graph_module._betweenness(options)	

Similar to _absoluteBetweeness but returns normalized values.

Examples

A route planner example, the betweenness of all locations.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._betweenness();

show execution results
A route planner example, the betweenness of all locations. This considers the actual
distances.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._betweenness({weight	:	'distance'});

show execution results
A route planner example, the betweenness of all cities regarding only outbound paths.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._betweenness({direction	:	'outbound',	weight	:	'distance'});

show execution results

_betweenness

http://en.wikipedia.org/wiki/Betweenness_centrality

Get the radius of a graph.

	graph._radius(options)	

The complexity of the function is described here.

Parameters

options: An object defining further options. Can have the following values:
direction: The direction of the edges. Possible values are outbound, inbound
and any (default).
algorithm: The algorithm to calculate the shortest paths, possible values are
Floyd-Warshall and Dijkstra.
weight: The name of the attribute of the edges containing the weight.
defaultWeight: Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as weight. If no
default is supplied the default would be positive infinity so the path and hence
the radius can not be calculated.

Examples

A route planner example, the radius of the graph.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._radius();

[

		1	

]

A route planner example, the radius of the graph. This considers the actual distances.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._radius({weight	:	'distance'});

[

		850	

]

A route planner example, the radius of the graph regarding only outbound paths.

_radius

http://en.wikipedia.org/wiki/Eccentricity_%28graph_theory%29
http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._radius({direction	:	'outbound',	weight	:	'distance'});

[

		550	

]

Get the diameter of a graph.

	graph._diameter(graphName,	options)	

The complexity of the function is described here.

Parameters

options: An object defining further options. Can have the following values:
direction: The direction of the edges. Possible values are outbound, inbound
and any (default).
algorithm: The algorithm to calculate the shortest paths, possible values are
Floyd-Warshall and Dijkstra.
weight: The name of the attribute of the edges containing the weight.
defaultWeight: Only used with the option weight. If an edge does not have the
attribute named as defined in option weight this default is used as weight. If no
default is supplied the default would be positive infinity so the path and hence
the radius can not be calculated.

Examples

A route planner example, the diameter of the graph.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._diameter();

[

		1	

]

A route planner example, the diameter of the graph. This considers the actual distances.

_diameter

http://en.wikipedia.org/wiki/Eccentricity_%28graph_theory%29
http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._diameter({weight	:	'distance'});

[

		1200	

]

A route planner example, the diameter of the graph regarding only outbound paths.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._diameter({direction	:	'outbound',	weight	:	'distance'});

[

		1200	

]

This chapter describes a fluent interface to query your graph. The philosophy of this
interface is to select a group of starting elements (vertices or edges) at first and from
there on explore the graph with your query by selecting connected elements.

As an example you can start with a set of vertices, select their direct neighbors and finally
their outgoing edges.

The result of this query will be the set of outgoing edges. For each part of the query it is
possible to further refine the resulting set of elements by giving examples for them.

For many of the following functions examples can be passed in as a parameter.
Examples are used to filter the result set for objects that match the conditions. These
examples can have the following values:

null, there is no matching executed all found results are valid.
A string, only results are returned, which _id equal the value of the string
An example object, defining a set of attributes. Only results having these attributes
are matched.
A list containing example objects and/or strings. All results matching at least one of
the elements in the list are returned.

This section describes the entry points for the fluent interface. The philosophy of this
module is to start with a specific subset of vertices or edges and from there on iterate
over the graph.

Therefore you get exactly this two entry points:

Select a set of edges
Select a set of vertices

Edges

Fluent AQL Interface

Definition of examples

Starting Points

Select some edges from the graph.

	graph._edges(examples)	

Creates an AQL statement to select a subset of the edges stored in the graph. This is
one of the entry points for the fluent AQL interface. It will return a mutable AQL statement
which can be further refined, using the functions described below. The resulting set of
edges can be filtered by defining one or more examples.

Parameters

examples: See Definition of examples

Examples

In the examples the toArray function is used to print the result. The description of this
function can be found below.

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph._edges().toArray();

show execution results
To request filtered edges:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph._edges({type:	"married"}).toArray();

show execution results
Vertices

Select some vertices from the graph.

	graph._vertices(examples)	

Creates an AQL statement to select a subset of the vertices stored in the graph. This is
one of the entry points for the fluent AQL interface. It will return a mutable AQL statement
which can be further refined, using the functions described below. The resulting set of
edges can be filtered by defining one or more examples.

Parameters

examples: See Definition of examples

Examples

In the examples the toArray function is used to print the result. The description of this
function can be found below.

To request unfiltered vertices:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph._vertices().toArray();

show execution results
To request filtered vertices:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph._vertices([{name:	"Alice"},	{name:	"Bob"}]).toArray();

show execution results

The fluent query object handles cursor creation and maintenance for you. A cursor will be
created as soon as you request the first result. If you are unhappy with the current result
and want to refine it further you can execute a further step in the query which cleans up
the cursor for you. In this interface you get the complete functionality available for general
AQL cursors directly on your query. The cursor functionality is described in this section.

ToArray

Returns an array containing the complete result.

	graph_query.toArray()	

This function executes the generated query and returns the entire result as one array.
ToArray does not return the generated query anymore and hence can only be the

Working with the query cursor

endpoint of a query. However keeping a reference to the query before executing allows to
chain further statements to it.

Examples

To collect the entire result of a query toArray can be used:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices();

arangosh>	query.toArray();

show execution results
HasNext

Checks if the query has further results.

	graph_query.hasNext()	

The generated statement maintains a cursor for you. If this cursor is already present
hasNext() will use this cursors position to determine if there are further results available.
If the query has not yet been executed hasNext() will execute it and create the cursor for
you.

Examples

Start query execution with hasNext:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices();

arangosh>	query.hasNext();

true

Iterate over the result as long as it has more elements:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices();

arangosh>	while	(query.hasNext())	{

........>			var	entry	=	query.next();

........>			//	Do	something	with	the	entry

........>	}

Next

Request the next element in the result.

	graph_query.next()	

The generated statement maintains a cursor for you. If this cursor is already present
next() will use this cursors position to deliver the next result. Also the cursor position will
be moved by one. If the query has not yet been executed next() will execute it and create
the cursor for you. It will throw an error of your query has no further results.

Examples

Request some elements with next:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices();

arangosh>	query.next();

arangosh>	query.next();

arangosh>	query.next();

arangosh>	query.next();

show execution results
The cursor is recreated if the query is changed:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices();

arangosh>	query.next();

arangosh>	query.edges();

arangosh>	query.next();

show execution results
Count

Returns the number of returned elements if the query is executed.

	graph_query.count()	

This function determines the amount of elements to be expected within the result of the
query. It can be used at the beginning of execution of the query before using next() or in

between next() calls. The query object maintains a cursor of the query for you. count()
does not change the cursor position.

Examples

To count the number of matched elements:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices();

arangosh>	query.count();

4

After the selection of the entry point you can now query your graph in a fluent way,
meaning each of the functions on your query returns the query again. Hence it is possible
to chain arbitrary many executions one after the other. In this section all available query
statements are described.

Edges

Select all edges for the vertices selected before.

	graph_query.edges(examples)	

Creates an AQL statement to select all edges for each of the vertices selected in the step
before. This will include inbound as well as outbound edges. The resulting set of edges
can be filtered by defining one or more examples.

The complexity of this method is O(n*m^x) with n being the vertices defined by the
parameter vertexExamplex, m the average amount of edges of a vertex and x the
maximal depths. Hence the default call would have a complexity of O(n*m);

Parameters

examples: See Definition of examples

Examples

To request unfiltered edges:

Fluent queries

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices([{name:	"Alice"},	{name:	"Bob"}]);

arangosh>	query.edges().toArray();

show execution results
To request filtered edges by a single example:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices([{name:	"Alice"},	{name:	"Bob"}]);

arangosh>	query.edges({type:	"married"}).toArray();

show execution results
To request filtered edges by multiple examples:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices([{name:	"Alice"},	{name:	"Bob"}]);

arangosh>	query.edges([{type:	"married"},	{type:	"friend"}]).toArray();

show execution results
OutEdges

Select all outbound edges for the vertices selected before.

	graph_query.outEdges(examples)	

Creates an AQL statement to select all outbound edges for each of the vertices selected
in the step before. The resulting set of edges can be filtered by defining one or more
examples.

Parameters

examples: See Definition of examples

Examples

To request unfiltered outbound edges:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices([{name:	"Alice"},	{name:	"Bob"}]);

arangosh>	query.outEdges().toArray();

show execution results
To request filtered outbound edges by a single example:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices([{name:	"Alice"},	{name:	"Bob"}]);

arangosh>	query.outEdges({type:	"married"}).toArray();

show execution results
To request filtered outbound edges by multiple examples:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices([{name:	"Alice"},	{name:	"Bob"}]);

arangosh>	query.outEdges([{type:	"married"},	{type:	"friend"}]).toArray();

show execution results
InEdges

Select all inbound edges for the vertices selected before.

	graph_query.inEdges(examples)	

Creates an AQL statement to select all inbound edges for each of the vertices selected in
the step before. The resulting set of edges can be filtered by defining one or more
examples.

Parameters

examples: See Definition of examples

Examples

To request unfiltered inbound edges:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices([{name:	"Alice"},	{name:	"Bob"}]);

arangosh>	query.inEdges().toArray();

show execution results
To request filtered inbound edges by a single example:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices([{name:	"Alice"},	{name:	"Bob"}]);

arangosh>	query.inEdges({type:	"married"}).toArray();

show execution results
To request filtered inbound edges by multiple examples:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices([{name:	"Alice"},	{name:	"Bob"}]);

arangosh>	query.inEdges([{type:	"married"},	{type:	"friend"}]).toArray();

show execution results
Vertices

Select all vertices connected to the edges selected before.

	graph_query.vertices(examples)	

Creates an AQL statement to select all vertices for each of the edges selected in the step
before. This includes all vertices contained in _from as well as _to attribute of the edges.
The resulting set of vertices can be filtered by defining one or more examples.

Parameters

examples: See Definition of examples

Examples

To request unfiltered vertices:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.vertices().toArray();

show execution results
To request filtered vertices by a single example:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.vertices({name:	"Alice"}).toArray();

show execution results
To request filtered vertices by multiple examples:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.vertices([{name:	"Alice"},	{name:	"Charly"}]).toArray();

show execution results
FromVertices

Select all source vertices of the edges selected before.

	graph_query.fromVertices(examples)	

Creates an AQL statement to select the set of vertices where the edges selected in the
step before start at. This includes all vertices contained in _from attribute of the edges.
The resulting set of vertices can be filtered by defining one or more examples.

Parameters

examples: See Definition of examples

Examples

To request unfiltered source vertices:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.fromVertices().toArray();

show execution results

To request filtered source vertices by a single example:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.fromVertices({name:	"Alice"}).toArray();

show execution results
To request filtered source vertices by multiple examples:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.fromVertices([{name:	"Alice"},	{name:	"Charly"}]).toArray();

show execution results
ToVertices

Select all vertices targeted by the edges selected before.

	graph_query.toVertices(examples)	

Creates an AQL statement to select the set of vertices where the edges selected in the
step before end in. This includes all vertices contained in _to attribute of the edges. The
resulting set of vertices can be filtered by defining one or more examples.

Parameters

examples: See Definition of examples

Examples

To request unfiltered target vertices:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.toVertices().toArray();

show execution results
To request filtered target vertices by a single example:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.toVertices({name:	"Bob"}).toArray();

show execution results
To request filtered target vertices by multiple examples:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.toVertices([{name:	"Bob"},	{name:	"Diana"}]).toArray();

show execution results
Neighbors

Select all neighbors of the vertices selected in the step before.

	graph_query.neighbors(examples,	options)	

Creates an AQL statement to select all neighbors for each of the vertices selected in the
step before. The resulting set of vertices can be filtered by defining one or more
examples.

Parameters

examples: See Definition of examples

options: An object defining further options. Can have the following values:
direction: The direction of the edges. Possible values are outbound, inbound
and any (default).
edgeExamples: Filter the edges to be followed, see Definition of examples
edgeCollectionRestriction : One or a list of edge-collection names that should be
considered to be on the path.
vertexCollectionRestriction : One or a list of vertex-collection names that should
be considered on the intermediate vertex steps.
minDepth: Defines the minimal number of intermediate steps to neighbors
(default is 1).
maxDepth: Defines the maximal number of intermediate steps to neighbors
(default is 1).

Examples

To request unfiltered neighbors:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices({name:	"Alice"});

arangosh>	query.neighbors().toArray();

show execution results
To request filtered neighbors by a single example:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices({name:	"Alice"});

arangosh>	query.neighbors({name:	"Bob"}).toArray();

show execution results
To request filtered neighbors by multiple examples:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.vertices([{name:	"Bob"},	{name:	"Charly"}]).toArray();

show execution results
Restrict

Restricts the last statement in the chain to return only elements of a specified set of
collections

	graph_query.restrict(restrictions)	

By default all collections in the graph are searched for matching elements whenever
vertices and edges are requested. Using restrict after such a statement allows to restrict
the search to a specific set of collections within the graph. Restriction is only applied to
this one part of the query. It does not effect earlier or later statements.

Parameters

restrictions: Define either one or a list of collections in the graph. Only elements from

these collections are taken into account for the result.

Examples

Request all directly connected vertices unrestricted:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices({name:	"Alice"});

arangosh>	query.edges().vertices().toArray();

show execution results
Apply a restriction to the directly connected vertices:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices({name:	"Alice"});

arangosh>	query.edges().vertices().restrict("female").toArray();

show execution results
Restriction of a query is only valid for collections known to the graph: //

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices({name:	"Alice"});

arangosh>	query.edges().vertices().restrict(["female",	"male",	"products"]).toArray();

[ArangoError	10:	vertex	collections:	products	are	not	known	to	the	graph]

Filter

Filter the result of the query

	graph_query.filter(examples)	

This can be used to further specfiy the expected result of the query. The result set is
reduced to the set of elements that matches the given examples.

Parameters

examples: See Definition of examples

Examples

Request vertices unfiltered:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.toVertices().toArray();

show execution results
Request vertices filtered:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.toVertices().filter({name:	"Alice"}).toArray();

[]

Request edges unfiltered:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.toVertices().outEdges().toArray();

show execution results
Request edges filtered:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._edges({type:	"married"});

arangosh>	query.toVertices().outEdges().filter({type:	"married"}).toArray();

[]

Path

The result of the query is the path to all elements.

	graph_query.path()	

By defaut the result of the generated AQL query is the set of elements passing the last

matches. So having a 	vertices()	 query as the last step the result will be set of vertices.
Using 	path()	 as the last action before requesting the result will modify the result such
that the path required to find the set vertices is returned.

Examples

Request the iteratively explored path using vertices and edges:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices({name:	"Alice"});

arangosh>	query.outEdges().toVertices().path().toArray();

show execution results
When requesting neighbors the path to these neighbors is expanded:

arangosh>	var	examples	=	require("org/arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	query	=	graph._vertices({name:	"Alice"});

arangosh>	query.neighbors().path().toArray();

show execution results

Warning: Deprecated

This module is deprecated and will be removed soon. Please use General Graphs
instead.

A Graph consists of vertices and edges. The vertex collection contains the documents
forming the vertices. The edge collection contains the documents forming the edges.
Together both collections form a graph. Assume that the vertex collection is called
	vertices	 and the edges collection 	edges	, then you can build a graph using the Graph
constructor.

arango>	var	Graph	=	require("org/arangodb/graph").Graph;

arango>	g1	=	new	Graph("graph",	"vertices",	"edges");

Graph("vertices",	"edges")

It is possible to use different edges with the same vertices. For instance, to build a new
graph with a different edge collection use

arango>	var	Graph	=	require("org/arangodb/graph").Graph;

arango>	g2	=	new	Graph("graph",	"vertices",	"alternativeEdges");

Graph("vertices",	"alternativeEdges")

It is, however, impossible to use different vertices with the same edges. Edges are tied to
the vertices.

Graphs

The graph module provides basic functions dealing with graph structures. The examples
assume

arango>	var	Graph	=	require("org/arangodb/graph").Graph;

arango>	g	=	new	Graph("graph",	"vertices",	"edges");

Graph("graph")

	Graph(name,	vertices,	edges)	

Constructs a new graph object using the collection vertices for all vertices and the
collection edges for all edges. Note that it is possible to construct two graphs with the
same vertex set, but different edge sets.

	Graph(name)	

Returns a known graph.

Examples

arango>	var	Graph	=	require("org/arangodb/graph").Graph;

arango>	new	Graph("graph",	db.vertices,	db.edges);

Graph("graph")

arango>	new	Graph("graph",	"vertices",	"edges");

Graph("graph")

	graph.addEdge(out,	in,	id)	

Creates a new edge from out to in and returns the edge object. The identifier id must be a
unique identifier or null. out and in can either be vertices or their IDs

	graph.addEdge(out,	in,	id,	label)	

Creates a new edge from out to in with label and returns the edge object. out and in can
either be vertices or their IDs

	graph.addEdge(out,	in,	id,	data)	

Graph Constructors and Methods

Creates a new edge and returns the edge object. The edge contains the properties
defined in data. out and in can either be vertices or their IDs

	graph.addEdge(out,	in,	id,	label,	data)	

Creates a new edge and returns the edge object. The edge has the label label and
contains the properties defined in data. out and in can either be vertices or their IDs

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	v2	=	g.addVertex(2);

Vertex(2)

arango>	e	=	g.addEdge(v1,	v2,	3);

Edge(3)

arango>	e	=	g.addEdge(v1,	v2,	4,	"1->2",	{	name	:	"Emil");

Edge(4)

	graph.addVertex(id)	

Creates a new vertex and returns the vertex object. The identifier id must be a unique
identifier or null.

	graph.addVertex(id,	data)	

Creates a new vertex and returns the vertex object. The vertex contains the properties
defined in data.

Examples

Without any properties:

arango>	v	=	g.addVertex("hugo");

Vertex("hugo")

With given properties:

arango>	v	=	g.addVertex("Emil",	{	age	:	123	});

Vertex("Emil")

arango>	v.getProperty("age");

123

	graph.getEdges()	

Returns an iterator for all edges of the graph. The iterator supports the methods hasNext
and next.

Examples

arango>	f	=	g.getEdges();

[edge	iterator]

arango>	f.hasNext();

true

arango>	e	=	f.next();

Edge("4636053")

	graph.getVertex(id)	

Returns the vertex identified by id or null.

Examples

arango>	g.addVertex(1);

Vertex(1)

arango>	g.getVertex(1)

Vertex(1)

	graph.getVertices()	

Returns an iterator for all vertices of the graph. The iterator supports the methods
hasNext and next.

Examples

arango>	f	=	g.getVertices();

[vertex	iterator]

arango>	f.hasNext();

true

arango>	v	=	f.next();

Vertex(18364)

	graph.removeVertex(vertex,	waitForSync)	

Deletes the vertex and all its edges.

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	v2	=	g.addVertex(2);

Vertex(2)

arango>	e	=	g.addEdge(v1,	v2,	3);

Edge(3)

arango>	g.removeVertex(v1);

arango>	v2.edges();

[]

	graph.removeEdge(vertex,	waitForSync)	

Deletes the edge. Note that the in and out vertices are left untouched.

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	v2	=	g.addVertex(2);

Vertex(2)

arango>	e	=	g.addEdge(v1,	v2,	3);

Edge(3)

arango>	g.removeEdge(e);

arango>	v2.edges();

[]

	graph.drop(waitForSync)	

Drops the graph, the vertices, and the edges. Handle with care.

	graph.getAll()	

Returns all available graphs.

	graph.geodesics(options)	

Return all shortest paths An optional options JSON object can be specified to control the
result. options can have the following sub-attributes:

grouped: if not specified or set to false, the result will be a flat list. If set to true, the result
will be a list containing list of paths, grouped for each combination of source and target.
threshold: if not specified, all paths will be returned. If threshold is true, only paths with a
minimum length of 3 will be returned

	graph.measurement(measurement)	

Calculates the diameter or radius of a graph. measurement can either be:

diameter: to calculate the diameter
radius: to calculate the radius

	graph.normalizedMeasurement(measurement)	

Calculates the normalized degree, closeness, betweenness or eccentricity of all vertices
in a graph measurement can either be:

closeness: to calculate the closeness
betweenness: to calculate the betweenness
eccentricity: to calculate the eccentricity

	vertex.addInEdge(peer,	id)	

Creates a new edge from peer to vertex and returns the edge object. The identifier id
must be a unique identifier or null.

	vertex.addInEdge(peer,	id,	label)	

Creates a new edge from peer to vertex with given label and returns the edge object.

	vertex.addInEdge(peer,	id,	label,	data)	

Creates a new edge from peer to vertex with given label and properties defined in data.
Returns the edge object.

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	v2	=	g.addVertex(2);

Vertex(2)

arango>	v1.addInEdge(v2,	"2	->	1");

Edge("2	->	1")

arango>	v1.getInEdges();

[Edge("2	->	1")]

arango>	v1.addInEdge(v2,	"D",	"knows",	{	data	:	1	});

Edge("D")

arango>	v1.getInEdges();

[Edge("K"),	Edge("2	->	1"),	Edges("D")]

	vertex.addOutEdge(peer)	

Creates a new edge from vertex to peer and returns the edge object.

	vertex.addOutEdge(peer,	label)	

Creates a new edge from vertex to peer with given label and returns the edge object.

	vertex.addOutEdge(peer,	label,	data)	

Vertex Methods

Creates a new edge from vertex to peer with given label and properties defined in data.
Returns the edge object.

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	v2	=	g.addVertex(2);

Vertex(2)

arango>	v1.addOutEdge(v2,	"1->2");

Edge("1->2")

arango>	v1.getOutEdges();

[Edge(1->2")]

arango>	v1.addOutEdge(v2,	3,	"knows");

Edge(3)

arango>	v1.addOutEdge(v2,	4,	"knows",	{	data	:	1	});

Edge(4)

	vertex.edges()	

Returns a list of in- or outbound edges of the vertex.

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	v2	=	g.addVertex();	

Vertex(2)

arango>	e	=	g.addEdge(v1,	v2,	"1->2");

Edge("1->2")

arango>	v1.edges();

[Edge("1->2")]

arango>	v2.edges();

[Edge("1->2")]

	vertex.getId()	

Returns the identifier of the vertex. If the vertex was deleted, then undefined is returned.

Examples

arango>	v	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v.getId();

"1"

	vertex.getInEdges(label,	...)	

Returns a list of inbound edges of the vertex with given label(s).

Examples

arango>	v1	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v2	=	g.addVertex(2,	{	name	:	"Emil"	});	

Vertex(2)

arango>	e1	=	g.addEdge(v1,	v2,	3,	"knows");

Edge(3)

arango>	e2	=	g.addEdge(v1,	v2,	4,	"hates");

Edge(4)

arango>	v2.getInEdges();

[Edge(3),	Edge(4)]

arango>	v2.getInEdges("knows");

[Edge(3)]

arango>	v2.getInEdges("hates");

[Edge(4)]

arango>	v2.getInEdges("knows",	"hates");

[Edge(3),	Edge(4)]

	vertex.getOutEdges(label,	...)	

Returns a list of outbound edges of the vertex with given label(s).

Examples

arango>	v1	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v2	=	g.addVertex(2,	{	name	:	"Emil"	});	

Vertex(2)

arango>	e1	=	g.addEdge(v1,	v2,	3,	"knows");

Edge(3)

arango>	e2	=	g.addEdge(v1,	v2,	4,	"hates");

Edge(4)

arango>	v1.getOutEdges();

[Edge(3),	Edge(4)]

arango>	v1.getOutEdges("knows");

[Edge(3)]

arango>	v1.getOutEdges("hates");

[Edge(4)]

arango>	v1.getOutEdges("knows",	"hates");

[Edge(3),	Edge(4)]

	vertex.getEdges(label,	...)	

Returns a list of in- or outbound edges of the vertex with given label(s).

	vertex.getProperty(name)	

Returns the property name a vertex.

Examples

arango>	v	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v.getProperty("name");

Hugo

vertex.getPropertyKeys()

Returns	all	propety	names	a	vertex.

Examples

arango>	v	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v.getPropertyKeys();

["name"]

arango>	v.setProperty("email",	"hugo@hugo.de");

"hugo@hugo.de"

arango>	v.getPropertyKeys();

["name",	"email"]

	vertex.properties()	

Returns all properties and their values of a vertex

Examples

arango>	v	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v.properties();

{	name	:	"Hugo"	}

	vertex.setProperty(name,	value)	

Changes or sets the property name a vertex to value.

Examples

arango>	v	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v.getProperty("name");

"Hugo"

arango>	v.setProperty("name",	"Emil");

"Emil"

arango>	v.getProperty("name");

"Emil"

	vertex.commonNeighborsWith(target_vertex,	options)	

	vertex.commonPropertiesWith(target_vertex,	options)	

	vertex.pathTo(target_vertex,	options)	

	vertex.distanceTo(target_vertex,	options)	

	vertex.determinePredecessors(source,	options)	

	vertex.pathesForTree(tree,	path_to_here)	

	vertex.getNeighbors(options)	

	vertex.measurement(measurement)	

Calculates the eccentricity, betweenness or closeness of the vertex

	edge.getId()	

Returns the identifier of the edge.

Examples

arango>	v	=	g.addVertex("v");

Vertex("v")

arango>	e	=	g.addEdge(v,	v,	1,	"self");

Edge(1)

arango>	e.getId();

1

	edge.getInVertex()	

Returns the vertex at the head of the edge.

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"self");

Edge(2)

arango>	e.getInVertex();

Vertex(1)

	edge.getLabel()	

Returns the label of the edge.

Examples

arango>	v	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"knows");

Edge(2)

Edge Methods

arango>	e.getLabel();

knows

	edge.getOutVertex()	

Returns the vertex at the tail of the edge.

Examples

arango>	v	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"self");

Edge(2)

arango>	e.getOutVertex();

Vertex(1)

	edge.getPeerVertex(vertex)	

Returns the peer vertex of the edge and the vertex.

Examples

arango>	v1	=	g.addVertex("1");

Vertex("1")

arango>	v2	=	g.addVertex("2");

Vertex("2")

arango>	e	=	g.addEdge(v1,	v2,	"1->2",	"knows");

Edge("1->2")

arango>	e.getPeerVertex(v1);

Vertex(2)

	edge.getProperty(name)	

Returns the property name an edge.

Examples

arango>	v	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"self",	{	"weight"	:	10	});

Edge(2)

arango>	e.getProperty("weight");

10

	edge.getPropertyKeys()	

Returns all propety names an edge.

Examples

arango>	v	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"self",	{	weight:	10	})

Edge(2)

arango>	e.getPropertyKeys()

["weight"]

arango>	e.setProperty("name",	"Hugo");

Hugo

arango>	e.getPropertyKeys()

["weight",	"name"]

	edge.properties()	

Returns all properties and their values of an edge

Examples

arango>	v	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"knows");

Edge(2)

arango>	e.properties();

{	"weight"	:	10	}

	edge.setProperty(name,	value)	

Changes or sets the property name an edges to value.

Examples

arango>	v	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"self",	{	weight:	10	})

Edge(2)

arango>	e.getPropert("weight")

10

arango>	e.setProperty("weight",	20);

20

arango>	e.getPropert("weight")

20

ArangoDB provides several ways to query graph data. Very simple operations can be
composed with the low-level edge methods edges, inEdges, and outEdges for edge
collections. For more complex operations, ArangoDB provides predefined traversal
objects.

For any of the following examples, we'll be using the example collections v and e,
populated with continents, countries and capitals data listed below (see Example Data).

ArangoDB provides the edges, inEdges, and outEdges methods for edge collections.
These methods can be used to quickly determine if a vertex is connected to other
vertices, and which. This functionality can be exploited to write very simple graph queries
in JavaScript.

For example, to determine which edges are linked to the world vertex, we can use
inEdges:

db.e.inEdges('v/world').forEach(function(edge)	{	

		require("internal").print(edge._from,	"->",	edge.type,	"->",	edge._to);	

});

inEdges will give us all ingoing edges for the specified vertex v/world. The result is a
JavaScript list, that we can iterate over and print the results:

v/continent-africa	->	is-in	->	v/world

v/continent-south-america	->	is-in	->	v/world

v/continent-asia	->	is-in	->	v/world

v/continent-australia	->	is-in	->	v/world

v/continent-europe	->	is-in	->	v/world

v/continent-north-america	->	is-in	->	v/world

Note: edges, inEdges, and outEdges return a list of edges. If we want to retrieve the
linked vertices, we can use each edges' _from and _to attributes as follows:

Traversals

Starting from Scratch

db.e.inEdges('v/world').forEach(function(edge)	{	

		require("internal").print(db._document(edge._from).name,	"->",	edge.type,	"->",	db._document(edge._to).name);	

});

We are using the document method from the db object to retrieve the connected vertices
now.

While this may be sufficient for one-level graph operations, writing a traversal by hand
may become too complex for multi-level traversals.

To use a traversal object, we first need to require the traversal module:

var	traversal	=	require("org/arangodb/graph/traversal");

We then need to setup a configuration for the traversal and determine at which vertex to
start the traversal:

var	config	=	{

		datasource:	traversal.generalGraphDatasourceFactory("world_graph"),

		strategy:	"depthfirst",

		order:	"preorder",

		filter:	traversal.visitAllFilter,

		expander:	traversal.inboundExpander,

		maxDepth:	1

};

var	startVertex	=	db._document("v/world");

Note: The startVertex needs to be a document, not only a document id.

We can then create a traverser and start the traversal by calling its traverse method. Note
that traverse needs a result object, which it can modify in place:

var	result	=	{	

		visited:	{	

				vertices:	[],	

				paths:	[]	

		}	

};

var	traverser	=	new	traversal.Traverser(config);

traverser.traverse(result,	startVertex);

Finally, we can print the contents of the results object, limited to the visited vertices. We
will only print the name and type of each visited vertex for brevity:

require("internal").print(result.visited.vertices.map(function(vertex)	{	

		return	vertex.name	+	"	("	+	vertex.type	+	")";	

}));

Getting started

The full script, which includes all steps carried out so far is thus:

var	traversal	=	require("org/arangodb/graph/traversal");

var	config	=	{

		datasource:	traversal.generalGraphDatasourceFactory("world_graph"),

		strategy:	"depthfirst",

		order:	"preorder",

		filter:	traversal.visitAllFilter,

		expander:	traversal.inboundExpander,

		maxDepth:	1

};

var	startVertex	=	db._document("v/world");

var	result	=	{	

		visited:	{	

				vertices:	[],	

				paths:	[]	

		}	

};

var	traverser	=	new	traversal.Traverser(config);

traverser.traverse(result,	startVertex);

require("internal").print(result.visited.vertices.map(function(vertex)	{	

		return	vertex.name	+	"	("	+	vertex.type	+	")";	

}));

The result is a list of vertices that were visited during the traversal, starting at the start
vertex (i.e. v/world in our example):

[

		"World	(root)",	

		"Africa	(continent)",	

		"Asia	(continent)",	

		"Australia	(continent)",	

		"Europe	(continent)",	

		"North	America	(continent)",	

		"South	America	(continent)"	

]

Note: The result is limited to vertices directly connected to the start vertex. We achieved
this by setting the maxDepth attribute to 1. Not setting it would return the full list of
vertices.

Traversal Direction

For the examples contained in this manual, we'll be starting the traversals at vertex

v/world. Vertices in our graph are connected like this:

v/world	<-	is-in	<-	continent	(Africa)	<-	is-in	<-	country	(Algeria)	<-	is-in	<-	capital	(Algiers)

To get any meaningful results, we must traverse the graph in inbound order. This means,
we'll be following all incoming edges of to a vertex. In the traversal configuration, we have
specified this via the expander attribute:

var	config	=	{

		...

		expander:	traversal.inboundExpander

};

For other graphs, we might want to traverse via the outgoing edges. For this, we can use
the outboundExpander. There is also an anyExpander, which will follow both outgoing
and incoming edges. This should be used with care and the traversal should always be
limited to a maximum number of iterations (e.g. using the maxIterations attribute) in order
to terminate at some point.

To invoke the default outbound expander for a graph, simply use the predefined function:

var	config	=	{

		...

		expander:	traversal.outboundExpander

};

Please note the outbound expander will not produce any output for the examples if we
still start the traversal at the v/world vertex.

Still, we can use the outbound expander if we start somewhere else in the graph, e.g.

var	traversal	=	require("org/arangodb/graph/traversal");

var	config	=	{

		datasource:	traversal.generalGraphDatasourceFactory("world_graph"),

		strategy:	"depthfirst",

		order:	"preorder",

		filter:	traversal.visitAllFilter,

		expander:	traversal.outboundExpander

};

var	startVertex	=	db._document("v/capital-algiers");

var	result	=	{	

		visited:	{	

				vertices:	[],	

				paths:	[]	

		}	

};

var	traverser	=	new	traversal.Traverser(config);

traverser.traverse(result,	startVertex);

require("internal").print(result.visited.vertices.map(function(vertex)	{	

		return	vertex.name	+	"	("	+	vertex.type	+	")";	

}));

The result is:

[

		"Algiers	(capital)",	

		"Algeria	(country)",	

		"Africa	(continent)",	

		"World	(root)"	

]

which confirms that now we're going outbound.

Traversal Strategy

Depth-first traversals

The visitation order of vertices is determined by the strategy, order attributes set in the
configuration. We chose depthfirst and preorder, meaning the traverser will emit each
vertex before handling connected edges (pre-order), and descend into any connected
edges before processing other vertices on the same level (depth-first).

Let's remove the maxDepth attribute now. We'll now be getting all vertices (directly and
indirectly connected to the start vertex):

var	config	=	{

		datasource:	traversal.generalGraphDatasourceFactory("world_graph"),

		strategy:	"depthfirst",

		order:	"preorder",

		filter:	traversal.visitAllFilter,

		expander:	traversal.inboundExpander

};

var	result	=	{	

		visited:	{	

				vertices:	[],	

				paths:	[]	

		}	

};

var	traverser	=	new	traversal.Traverser(config);

traverser.traverse(result,	startVertex);

require("internal").print(result.visited.vertices.map(function(vertex)	{	

		return	vertex.name	+	"	("	+	vertex.type	+	")";	

}));

The result will be a longer list, assembled in depth-first, pre-order order. For each
continent found, the traverser will descend into linked countries, and then into the linked
capital:

[

		"World	(root)",	

		"Africa	(continent)",	

		"Algeria	(country)",	

		"Algiers	(capital)",	

		"Angola	(country)",	

		"Luanda	(capital)",	

		"Botswana	(country)",	

		"Gaborone	(capital)",	

		"Burkina	Faso	(country)",	

		"Ouagadougou	(capital)",	

		...

]

Let's switch the order attribute from preorder to postorder. This will make the traverser
emit vertices after all connected vertices were visited (i.e. most distant vertices will be
emitted first):

[

		"Algiers	(capital)",	

		"Algeria	(country)",	

		"Luanda	(capital)",	

		"Angola	(country)",	

		"Gaborone	(capital)",	

		"Botswana	(country)",	

		"Ouagadougou	(capital)",	

		"Burkina	Faso	(country)",	

		"Bujumbura	(capital)",	

		"Burundi	(country)",	

		"Yaounde	(capital)",	

		"Cameroon	(country)",	

		"N'Djamena	(capital)",	

		"Chad	(country)",	

		"Yamoussoukro	(capital)",	

		"Cote	d'Ivoire	(country)",	

		"Cairo	(capital)",	

		"Egypt	(country)",	

		"Asmara	(capital)",	

		"Eritrea	(country)",	

		"Africa	(continent)",	

		...

]

Breadth-first traversals

If we go back to preorder, but change the strategy to breadth-first and re-run the
traversal, we'll see that the return order changes, and items on the same level will be
returned adjacently:

[

		"World	(root)",	

		"Africa	(continent)",	

		"Asia	(continent)",	

		"Australia	(continent)",	

		"Europe	(continent)",	

		"North	America	(continent)",	

		"South	America	(continent)",	

		"Burkina	Faso	(country)",	

		"Burundi	(country)",	

		"Cameroon	(country)",	

		"Chad	(country)",	

		"Algeria	(country)",	

		"Angola	(country)",	

		...

]

Note: The order of items returned for the same level is undefined. This is because there
is no natural order of edges for a vertex with multiple connected edges. To explicitly set
the order for edges on the same level, you can specify an edge comparator function with
the sort attribute:

var	config	=	{

		...

		sort:	function	(l,	r)	{	return	l._key	<	r._key	?	1	:	-1;	}

		...

};

The arguments l and r are edge documents. This will traverse edges of the same vertex
in backward _key order:

[

		"World	(root)",	

		"South	America	(continent)",	

		"North	America	(continent)",	

		"Europe	(continent)",	

		"Australia	(continent)",	

		"Asia	(continent)",	

		"Africa	(continent)",	

		"Ecuador	(country)",	

		"Colombia	(country)",	

		"Chile	(country)",	

		"Brazil	(country)",	

		"Bolivia	(country)",	

		"Argentina	(country)",	

		...

]

Note: This attribute only works for the usual expanders traversal.inboundExpander,
traversal.outboundExpander, traversal.anyExpander and their corresponding
"WithLabels" variants. If you are using custom expanders you have to organize the
sorting within the specified expander.

Writing Custom Visitors

So far we have used much of the traverser's default functions. The traverser is very
configurable and many of the default functions can be overridden with custom
functionality.

For example, we have been using the default visitor function (which is always used if the
configuration does not contain the visitor attribute). The default visitor function is called
for each vertex in a traversal, and will push it into the result. This is the reason why the
result variable looked different after the traversal, and needed to be initialized before the
traversal was started.

Note that the default visitor (named 	trackingVisitor) will add every visited vertex into
the result, including the full from the start node. This is useful for learning and debugging
purposes, but should be avoided in production. Instead, only those data should be copied
into the result that are actually necessary.

We can write our own visitor function if we want to. The general function signature for
visitor functions is as follows:

var	config	=	{

		...

		visitor:	function	(config,	result,	vertex,	path)	{	...	}

};

Visitor functions are not expected to return any values. Instead, they can modify the
result variable (e.g. by pushing the current vertex into it), or do anything else. For
example, we can create a simple visitor function that only prints information about the
current vertex as we traverse:

var	config	=	{

		datasource:	traversal.generalGraphDatasourceFactory("world_graph"),

		strategy:	"depthfirst",

		order:	"preorder",

		filter:	traversal.visitAllFilter,

		expander:	traversal.inboundExpander,

		visitor:	function	(config,	result,	vertex,	path)	{

				require("internal").print("visiting	vertex",	vertex.name);

		}

};

var	traverser	=	new	traversal.Traverser(config);

traverser.traverse(undefined,	startVertex);

To write a visitor that increments a counter each time a vertex is visited, we could write
the following custom visitor:

config.visitor	=	function	(config,	result,	vertex,	path)	{

		if	(!	result)	{

				return;

		}

		if	(result.hasOwnProperty('count'))	{

				//	increment	by	one

				++result.count;

		}

		else	{

				//	result	not	yet	there,	so	set	it	to	one

				result.count	=	1;

		}

}

Note that such visitor is already predefined. It can be used as follows:

config.visitor	=	traversal.countingVisitor;

Another example of a visitor is one that prints the 	_id	 values of vertices encountered:

config.visitor	=	function	(config,	result,	vertex,	path)	{

		if	(!	result	||	!	result.visited	||	!	result.visited.vertices)	{

				return;

		}

		result.visited.vertices.push(vertex._id);

}

Filtering Vertices and Edges

Filtering Vertices

So far we have returned all vertices that were visited during the traversal. This is not
always required. If the result shall be restrict to just specific vertices, we can use a filter
function for vertices. It can be defined by setting the filter attribute of a traversal
configuration, e.g.:

var	config	=	{

		filter:	function	(config,	vertex,	path)	{

				if	(vertex.type	!==	'capital')	{

						return	'exclude';

				}

		}

}

The above filter function will exclude all vertices that do not have a type value of capital.
The filter function will be called for each vertex found during the traversal. It will receive
the traversal configuration, the current vertex, and the full path from the traversal start
vertex to the current vertex. The path consists of a list of edges, and a list of vertices. We
could also filter everything but capitals by checking the length of the path from the start
vertex to the current vertex. Capitals will have a distance of 3 from the v/world start vertex
(capital -> is-in -> country -> is-in -> continent -> is-in -> world):

var	config	=	{

		...

		filter:	function	(config,	vertex,	path)	{

				if	(path.edges.length	<	3)	{

						return	'exclude';

				}

		}

}

Note: If a filter function returns nothing (or undefined), the current vertex will be included,

and all connected edges will be followed. If a filter function returns exclude the current
vertex will be excluded from the result, and all still all connected edges will be followed. If
a filter function returns prune, the current vertex will be included, but no connected edges
will be followed.

For example, the following filter function will not descend into connected edges of
continents, limiting the depth of the traversal. Still, continent vertices will be included in
the result:

var	config	=	{

		...

		filter:	function	(config,	vertex,	path)	{

				if	(vertex.type	===	'continent')	{

						return	'prune';

				}

		}

}

It is also possible to combine exclude and prune by returning a list with both values:

return	['exclude',	'prune'];

Filtering Edges

It is possible to exclude certain edges from the traversal. To filter on edges, a filter
function can be defined via the expandFilter attribute. The expandFilter is a function
which is called for each edge during a traversal.

It will receive the current edge (edge variable) and the vertex which the edge connects to
(in the direction of the traversal). It also receives the current path from the start vertex up
to the current vertex (excluding the current edge and the vertex the edge points to).

If the function returns true, the edge will be followed. If the function returns false, the
edge will not be followed. Here is a very simple custom edge filter function
implementation, which simply includes edges if the (edges) path length is less than 1,
and will exclude any other edges. This will effectively terminate the traversal after the first
level of edges:

var	config	=	{

		...

		expandFilter:	function	(config,	vertex,	edge,	path)	{

				return	(path.edges.length	<	1);

		}

};

Writing Custom Expanders

The edges connected to a vertex are determined by the expander. So far we have used a
default expander (the default inbound expander to be precise). The default inbound
expander simply enumerates all connected ingoing edges for a vertex, based on the
edge collection specified in the traversal configuration.

There is also a default outbound expander, which will enumerate all connected outgoing
edges. Finally, there is an any expander, which will follow both ingoing and outgoing
edges.

If connected edges must be determined in some different fashion for whatever reason, a
custom expander can be written and registered by setting the expander attribute of the
configuration. The expander function signature is as follows:

var	config	=	{

		...

		expander:	function	(config,	vertex,	path)	{	...	}

}

It is the expander's responsibility to return all edges and vertices directly connected to the
current vertex (which is passed via the vertex variable). The full path from the start vertex
up to the current vertex is also supplied via the path variable. An expander is expected to
return a list of objects, which need to have an edge and a vertex attribute each.

Note: If you want to rely on a particular order in which the edges are traversed, you have
to sort the edges returned by your expander within the code of the expander. The
functions to get outbound, inbound or any edges from a vertex do not guarantee any
particular order!

A custom implementation of an inbound expander could look like this (this is a non-
deterministic expander, which randomly decides whether or not to include connected
edges):

var	config	=	{

		...

		expander:	function	(config,	vertex,	path)	{

				var	connections	=	[];

				var	datasource	=	config.datasource;

				datasource.getInEdges(vertex._id).forEach(function	(edge)	{

						if	(Math.random()	>=	0.5)	{

								connections.push({	edge:	edge,	vertex:	(edge._from)	});

						}

				});

				return	connections;

		}	

};

A custom expander can also be used as an edge filter because it has full control over
which edges will be returned.

Following are two examples of custom expanders that pick edges based on attributes of
the edges and the connected vertices.

Finding the connected edges / vertices based on an attribute when in the connected
vertices. The goal is to follow the edge that leads to the vertex with the highest value in
the when attribute:

var	config	=	{

		...

		expander:	function	(config,	vertex,	path)	{

				var	datasource	=	config.datasource;

				//	determine	all	outgoing	edges

				var	outEdges	=	datasource.getOutEdges(vertex);

				if	(outEdges.length	===	0)	{

						return	[];

				}		

				var	data	=	[];

				outEdges.forEach(function	(edge)	{

						data.push({	edge:	edge,	vertex:	datasource.getInVertex(edge)	});

				});

				//	sort	outgoing	vertices	according	to	"when"	attribute	value

				data.sort(function	(l,	r)	{

						if	(l.vertex.when	===	r.vertex.when)	{

								return	0;		

						}

						return	(l.vertex.when	<	r.vertex.when	?	1	:	-1);

				});

				//	pick	first	vertex	found	(with	highest	"when"	attribute	value)

				return	[data[0]];

		}

		...

};

Finding the connected edges / vertices based on an attribute when in the edge itself. The
goal is to pick the one edge (out of potentially many) that has the highest when attribute
value:

var	config	=	{

		...

		expander:	function	(config,	vertex,	path)	{

				var	datasource	=	config.datasource;

				//	determine	all	outgoing	edges

				var	outEdges	=	datasource.getOutEdges(vertex);

				if	(outEdges.length	===	0)	{

						return	[];	//	return	an	empty	list

				}

				//	sort	all	outgoing	edges	according	to	"when"	attribute

				outEdges.sort(function	(l,	r)	{

						if	(l.when	===	r.when)	{

								return	0;

						}

						return	(l.when	<	r.when	?	-1	:	1);

				});

				//	return	first	edge	(the	one	with	highest	"when"	value)

				var	edge	=	outEdges[0];

				try	{

						var	v	=	datasource.getInVertex(edge);

						return	[{	edge:	edge,	vertex:	v	}];			

				}

				catch	(e)	{	}

				return	[];

		}

		...

};

Handling Uniqueness

Graphs may contain cycles. To be on top of what happens when a traversal encounters a
vertex or an edge it has already visited, there are configuration options.

The default configuration is to visit every vertex, regardless of whether it was already
visited in the same traversal. However, edges will by default only be followed if they are
not already present in the current path.

Imagine the following graph which contains a cycle:

A	->	B	->	C	->	A

When the traversal finds the edge from C to A, it will by default follow it. This is because
we have not seen this edge yet. It will also visit vertex A again. This is because by default
all vertices will be visited, regardless of whether already visited or not.

However, the traversal will not again following the outgoing edge from A to B. This is
because we already have the edge from A to B in our current path.

These default settings will prevent infinite traversals.

To adjust the uniqueness for visiting vertices, there are the following options for
uniqueness.vertices:

"none": always visit a vertices, regardless of whether it was already visited or not
"global": visit a vertex only if it was not visited in the traversal
"path": visit a vertex if it is not included in the current path

To adjust the uniqueness for following edges, there are the following options for
uniqueness.edges:

"none": always follow an edge, regardless of whether it was followed before
"global": follow an edge only if it wasn't followed in the traversal
"path": follow an edge if it is not included in the current path ```

Note that uniqueness checking will have some effect on both runtime and memory usage.
For example, when uniqueness checks are set to "global", lists of visited vertices and
edges must be kept in memory while the traversal is executed. Global uniqueness should
thus only be used when a traversal is expected to visit few nodes.

In terms of runtime, turning off uniqueness checks (by setting both options to "none") is
the best choice, but it is only safe for graphs that do not contain cycles. When
uniqueness checks are deactivated in a graph with cycles, the traversal might not abort in
a sensible amount of time.

Optimization

There are a few options for making a traversal run faster.

The best option is to make the amount of visited vertices and followed edges as small as
possible. This can be achieved by writing custom filter and expander functions. Such
functions should only include vertices of interest, and only follow edges that might be
interesting.

Traversal depth can also be bounded with the minDepth and maxDepth options.

Another way to speed up traversals is to write a custom visitor function. The default
visitor function will copy any visited vertex into the result. If vertices contain lots of data,
this might be expensive. It is there recommended to only copy such data into the result
that is actually needed. The default visitor function will also copy the full path to the
visited document into the result. This is even more expensive and should be avoided if
possible.

For graphs that are known to not contain any cycles, uniqueness checks may be turned
off. This can achieved via the uniqueness configuration options. Note that uniqueness
checks should not be turned off for graphs that contain cycles or if there is no information
about the graph's structure.

Finally, the buildVertices configuration option can be set to false to avoid looking up and
fully constructing vertex data. If all that's needed from vertices are the _id or _key
attributes, the buildvertices option can be set to false. If visitor, filter or expandFilter
functions need to access other vertex attributes, the option should not be changed.

Configuration Overview

This section summarizes the configuration attributes for the traversal object. The
configuration can consist of the following attributes:

visitor: visitor function for vertices. The function signature is function (config, result,
vertex, path). This function is not expected to return a value, but may modify the
variable as needed (e.g. by pushing vertex data into the result).
expander: expander function that is responsible for returning edges and vertices
directly connected to a vertex . The function signature is function (config, vertex,
path). The expander function is required to return a list of connection objects,
consisting of an edge and vertex attribute each.
filter: vertex filter function. The function signature is function (config, vertex, path). It
may return one of the following values:

undefined: vertex will be included in the result and connected edges will be
traversed
exclude: vertex will not be included in the result and connected edges will be
traversed
prune: vertex will be included in the result but connected edges will not be
traversed
[prune, exclude]: vertex will not be included in the result and connected edges
will not be returned

expandFilter: filter function applied on each edge/vertex combination determined by
the expander. The function signature is function (config, vertex, edge, path). The
function should return true if the edge/vertex combination should be processed, and
false if it should be ignored.
sort: a filter function to determine the order in which connected edges are processed.
The function signature is function (l, r). The function is required to return one of the
following values:

-1 if l should have a sort value less than r
1 if l should have a higher sort value than r
0 if l and r have the same sort value

strategy: determines the visitation strategy. Possible values are depthfirst and
breadthfirst.
order: determines the visitation order. Possible values are preorder and postorder.
itemOrder: determines the order in which connections returned by the expander will
be processed. Possible values are forward and backward.
maxDepth: if set to a value greater than 0, this will limit the traversal to this maximum
depth.
minDepth: if set to a value greater than 0, all vertices found on a level below the
minDepth level will not be included in the result.
maxIterations: the maximum number of iterations that the traversal is allowed to
perform. It is sensible to set this number so unbounded traversals will terminate at
some point.
uniqueness: an object that defines how repeated visitations of vertices should be
handled. The uniqueness object can have a sub-attribute vertices, and a sub-
attribute edges. Each sub-attribute can have one of the following values:

"none": no uniqueness constraints
"path": element is excluded if it is already contained in the current path. This
setting may be sensible for graphs that contain cycles (e.g. A -> B -> C -> A).
"global": element is excluded if it was already found/visited at any point during
the traversal.

buildVertices: this attribute controls whether vertices encountered during the
traversal will be looked up in the database and will be made available to visitor, filter,
and expandFilter functions. By default, vertices will be looked up and made
available. However, there are some special use cases when fully constructing vertex
objects is not necessary and can be avoided. For example, if a traversal is meant to
only count the number of visited vertices but do not read any data from vertices, this
option might be set to true.

The following examples all use a vertex collection v and an edge collection e. The vertex
collection v contains continents, countries, and capitals. The edge collection e contains
connections between continents and countries, and between countries and capitals.

To set up the collections and populate them with initial data, the following script was
used:

db._create("v");

db._createEdgeCollection("e");

//	vertices:	root	node	

db.v.save({	_key:	"world",	name:	"World",	type:	"root"	});

//	vertices:	continents	

db.v.save({	_key:	"continent-africa",	name:	"Africa",	type:	"continent"	});

db.v.save({	_key:	"continent-asia",	name:	"Asia",	type:	"continent"	});

db.v.save({	_key:	"continent-australia",	name:	"Australia",	type:	"continent"	});

db.v.save({	_key:	"continent-europe",	name:	"Europe",	type:	"continent"	});

db.v.save({	_key:	"continent-north-america",	name:	"North	America",	type:	"continent"	});

db.v.save({	_key:	"continent-south-america",	name:	"South	America",	type:	"continent"	});

//	vertices:	countries	

db.v.save({	_key:	"country-afghanistan",	name:	"Afghanistan",	type:	"country",	code:	"AFG"

db.v.save({	_key:	"country-albania",	name:	"Albania",	type:	"country",	code:	"ALB"	});

db.v.save({	_key:	"country-algeria",	name:	"Algeria",	type:	"country",	code:	"DZA"	});

db.v.save({	_key:	"country-andorra",	name:	"Andorra",	type:	"country",	code:	"AND"	});

db.v.save({	_key:	"country-angola",	name:	"Angola",	type:	"country",	code:	"AGO"	});

db.v.save({	_key:	"country-antigua-and-barbuda",	name:	"Antigua	and	Barbuda",	type:	"country"

db.v.save({	_key:	"country-argentina",	name:	"Argentina",	type:	"country",	code:	"ARG"

db.v.save({	_key:	"country-australia",	name:	"Australia",	type:	"country",	code:	"AUS"

db.v.save({	_key:	"country-austria",	name:	"Austria",	type:	"country",	code:	"AUT"	});

db.v.save({	_key:	"country-bahamas",	name:	"Bahamas",	type:	"country",	code:	"BHS"	});

db.v.save({	_key:	"country-bahrain",	name:	"Bahrain",	type:	"country",	code:	"BHR"	});

db.v.save({	_key:	"country-bangladesh",	name:	"Bangladesh",	type:	"country",	code:	"BGD"

db.v.save({	_key:	"country-barbados",	name:	"Barbados",	type:	"country",	code:	"BRB"	});

db.v.save({	_key:	"country-belgium",	name:	"Belgium",	type:	"country",	code:	"BEL"	});

db.v.save({	_key:	"country-bhutan",	name:	"Bhutan",	type:	"country",	code:	"BTN"	});

db.v.save({	_key:	"country-bolivia",	name:	"Bolivia",	type:	"country",	code:	"BOL"	});

db.v.save({	_key:	"country-bosnia-and-herzegovina",	name:	"Bosnia	and	Herzegovina",	type:	

db.v.save({	_key:	"country-botswana",	name:	"Botswana",	type:	"country",	code:	"BWA"	});

db.v.save({	_key:	"country-brazil",	name:	"Brazil",	type:	"country",	code:	"BRA"	});

db.v.save({	_key:	"country-brunei",	name:	"Brunei",	type:	"country",	code:	"BRN"	});

db.v.save({	_key:	"country-bulgaria",	name:	"Bulgaria",	type:	"country",	code:	"BGR"	});

db.v.save({	_key:	"country-burkina-faso",	name:	"Burkina	Faso",	type:	"country",	code:	

db.v.save({	_key:	"country-burundi",	name:	"Burundi",	type:	"country",	code:	"BDI"	});

db.v.save({	_key:	"country-cambodia",	name:	"Cambodia",	type:	"country",	code:	"KHM"	});

db.v.save({	_key:	"country-cameroon",	name:	"Cameroon",	type:	"country",	code:	"CMR"	});

db.v.save({	_key:	"country-canada",	name:	"Canada",	type:	"country",	code:	"CAN"	});

db.v.save({	_key:	"country-chad",	name:	"Chad",	type:	"country",	code:	"TCD"	});

Example Data

db.v.save({	_key:	"country-chile",	name:	"Chile",	type:	"country",	code:	"CHL"	});

db.v.save({	_key:	"country-colombia",	name:	"Colombia",	type:	"country",	code:	"COL"	});

db.v.save({	_key:	"country-cote-d-ivoire",	name:	"Cote	d'Ivoire",	type:	"country",	code:	

db.v.save({	_key:	"country-croatia",	name:	"Croatia",	type:	"country",	code:	"HRV"	});

db.v.save({	_key:	"country-czech-republic",	name:	"Czech	Republic",	type:	"country",	code:	

db.v.save({	_key:	"country-denmark",	name:	"Denmark",	type:	"country",	code:	"DNK"	});

db.v.save({	_key:	"country-ecuador",	name:	"Ecuador",	type:	"country",	code:	"ECU"	});

db.v.save({	_key:	"country-egypt",	name:	"Egypt",	type:	"country",	code:	"EGY"	});

db.v.save({	_key:	"country-eritrea",	name:	"Eritrea",	type:	"country",	code:	"ERI"	});

db.v.save({	_key:	"country-finland",	name:	"Finland",	type:	"country",	code:	"FIN"	});

db.v.save({	_key:	"country-france",	name:	"France",	type:	"country",	code:	"FRA"	});

db.v.save({	_key:	"country-germany",	name:	"Germany",	type:	"country",	code:	"DEU"	});

db.v.save({	_key:	"country-people-s-republic-of-china",	name:	"People's	Republic	of	China"

//	vertices:	capitals	

db.v.save({	_key:	"capital-algiers",	name:	"Algiers",	type:	"capital"	});

db.v.save({	_key:	"capital-andorra-la-vella",	name:	"Andorra	la	Vella",	type:	"capital"

db.v.save({	_key:	"capital-asmara",	name:	"Asmara",	type:	"capital"	});

db.v.save({	_key:	"capital-bandar-seri-begawan",	name:	"Bandar	Seri	Begawan",	type:	"capital"

db.v.save({	_key:	"capital-beijing",	name:	"Beijing",	type:	"capital"	});

db.v.save({	_key:	"capital-berlin",	name:	"Berlin",	type:	"capital"	});

db.v.save({	_key:	"capital-bogota",	name:	"Bogota",	type:	"capital"	});

db.v.save({	_key:	"capital-brasilia",	name:	"Brasilia",	type:	"capital"	});

db.v.save({	_key:	"capital-bridgetown",	name:	"Bridgetown",	type:	"capital"	});

db.v.save({	_key:	"capital-brussels",	name:	"Brussels",	type:	"capital"	});

db.v.save({	_key:	"capital-buenos-aires",	name:	"Buenos	Aires",	type:	"capital"	});

db.v.save({	_key:	"capital-bujumbura",	name:	"Bujumbura",	type:	"capital"	});

db.v.save({	_key:	"capital-cairo",	name:	"Cairo",	type:	"capital"	});

db.v.save({	_key:	"capital-canberra",	name:	"Canberra",	type:	"capital"	});

db.v.save({	_key:	"capital-copenhagen",	name:	"Copenhagen",	type:	"capital"	});

db.v.save({	_key:	"capital-dhaka",	name:	"Dhaka",	type:	"capital"	});

db.v.save({	_key:	"capital-gaborone",	name:	"Gaborone",	type:	"capital"	});

db.v.save({	_key:	"capital-helsinki",	name:	"Helsinki",	type:	"capital"	});

db.v.save({	_key:	"capital-kabul",	name:	"Kabul",	type:	"capital"	});

db.v.save({	_key:	"capital-la-paz",	name:	"La	Paz",	type:	"capital"	});

db.v.save({	_key:	"capital-luanda",	name:	"Luanda",	type:	"capital"	});

db.v.save({	_key:	"capital-manama",	name:	"Manama",	type:	"capital"	});

db.v.save({	_key:	"capital-nassau",	name:	"Nassau",	type:	"capital"	});

db.v.save({	_key:	"capital-n-djamena",	name:	"N'Djamena",	type:	"capital"	});

db.v.save({	_key:	"capital-ottawa",	name:	"Ottawa",	type:	"capital"	});

db.v.save({	_key:	"capital-ouagadougou",	name:	"Ouagadougou",	type:	"capital"	});

db.v.save({	_key:	"capital-paris",	name:	"Paris",	type:	"capital"	});

db.v.save({	_key:	"capital-phnom-penh",	name:	"Phnom	Penh",	type:	"capital"	});

db.v.save({	_key:	"capital-prague",	name:	"Prague",	type:	"capital"	});

db.v.save({	_key:	"capital-quito",	name:	"Quito",	type:	"capital"	});

db.v.save({	_key:	"capital-saint-john-s",	name:	"Saint	John's",	type:	"capital"	});

db.v.save({	_key:	"capital-santiago",	name:	"Santiago",	type:	"capital"	});

db.v.save({	_key:	"capital-sarajevo",	name:	"Sarajevo",	type:	"capital"	});

db.v.save({	_key:	"capital-sofia",	name:	"Sofia",	type:	"capital"	});

db.v.save({	_key:	"capital-thimphu",	name:	"Thimphu",	type:	"capital"	});

db.v.save({	_key:	"capital-tirana",	name:	"Tirana",	type:	"capital"	});

db.v.save({	_key:	"capital-vienna",	name:	"Vienna",	type:	"capital"	});

db.v.save({	_key:	"capital-yamoussoukro",	name:	"Yamoussoukro",	type:	"capital"	});

db.v.save({	_key:	"capital-yaounde",	name:	"Yaounde",	type:	"capital"	});

db.v.save({	_key:	"capital-zagreb",	name:	"Zagreb",	type:	"capital"	});

//	edges:	continent	->	world	

db.e.save("v/continent-africa",	"v/world",	{	type:	"is-in"	});

db.e.save("v/continent-asia",	"v/world",	{	type:	"is-in"	});

db.e.save("v/continent-australia",	"v/world",	{	type:	"is-in"	});

db.e.save("v/continent-europe",	"v/world",	{	type:	"is-in"	});

db.e.save("v/continent-north-america",	"v/world",	{	type:	"is-in"	});

db.e.save("v/continent-south-america",	"v/world",	{	type:	"is-in"	});

//	edges:	country	->	continent	

db.e.save("v/country-afghanistan",	"v/continent-asia",	{	type:	"is-in"	});

db.e.save("v/country-albania",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-algeria",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-andorra",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-angola",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-antigua-and-barbuda",	"v/continent-north-america",	{	type:	"is-in"

db.e.save("v/country-argentina",	"v/continent-south-america",	{	type:	"is-in"	});

db.e.save("v/country-australia",	"v/continent-australia",	{	type:	"is-in"	});

db.e.save("v/country-austria",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-bahamas",	"v/continent-north-america",	{	type:	"is-in"	});

db.e.save("v/country-bahrain",	"v/continent-asia",	{	type:	"is-in"	});

db.e.save("v/country-bangladesh",	"v/continent-asia",	{	type:	"is-in"	});

db.e.save("v/country-barbados",	"v/continent-north-america",	{	type:	"is-in"	});

db.e.save("v/country-belgium",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-bhutan",	"v/continent-asia",	{	type:	"is-in"	});

db.e.save("v/country-bolivia",	"v/continent-south-america",	{	type:	"is-in"	});

db.e.save("v/country-bosnia-and-herzegovina",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-botswana",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-brazil",	"v/continent-south-america",	{	type:	"is-in"	});

db.e.save("v/country-brunei",	"v/continent-asia",	{	type:	"is-in"	});

db.e.save("v/country-bulgaria",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-burkina-faso",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-burundi",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-cambodia",	"v/continent-asia",	{	type:	"is-in"	});

db.e.save("v/country-cameroon",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-canada",	"v/continent-north-america",	{	type:	"is-in"	});

db.e.save("v/country-chad",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-chile",	"v/continent-south-america",	{	type:	"is-in"	});

db.e.save("v/country-colombia",	"v/continent-south-america",	{	type:	"is-in"	});

db.e.save("v/country-cote-d-ivoire",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-croatia",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-czech-republic",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-denmark",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-ecuador",	"v/continent-south-america",	{	type:	"is-in"	});

db.e.save("v/country-egypt",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-eritrea",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-finland",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-france",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-germany",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-people-s-republic-of-china",	"v/continent-asia",	{	type:	"is-in"	});

//	edges:	capital	->	country	

db.e.save("v/capital-algiers",	"v/country-algeria",	{	type:	"is-in"	});

db.e.save("v/capital-andorra-la-vella",	"v/country-andorra",	{	type:	"is-in"	});

db.e.save("v/capital-asmara",	"v/country-eritrea",	{	type:	"is-in"	});

db.e.save("v/capital-bandar-seri-begawan",	"v/country-brunei",	{	type:	"is-in"	});

db.e.save("v/capital-beijing",	"v/country-people-s-republic-of-china",	{	type:	"is-in"

db.e.save("v/capital-berlin",	"v/country-germany",	{	type:	"is-in"	});

db.e.save("v/capital-bogota",	"v/country-colombia",	{	type:	"is-in"	});

db.e.save("v/capital-brasilia",	"v/country-brazil",	{	type:	"is-in"	});

db.e.save("v/capital-bridgetown",	"v/country-barbados",	{	type:	"is-in"	});

db.e.save("v/capital-brussels",	"v/country-belgium",	{	type:	"is-in"	});

db.e.save("v/capital-buenos-aires",	"v/country-argentina",	{	type:	"is-in"	});

db.e.save("v/capital-bujumbura",	"v/country-burundi",	{	type:	"is-in"	});

db.e.save("v/capital-cairo",	"v/country-egypt",	{	type:	"is-in"	});

db.e.save("v/capital-canberra",	"v/country-australia",	{	type:	"is-in"	});

db.e.save("v/capital-copenhagen",	"v/country-denmark",	{	type:	"is-in"	});

db.e.save("v/capital-dhaka",	"v/country-bangladesh",	{	type:	"is-in"	});

db.e.save("v/capital-gaborone",	"v/country-botswana",	{	type:	"is-in"	});

db.e.save("v/capital-helsinki",	"v/country-finland",	{	type:	"is-in"	});

db.e.save("v/capital-kabul",	"v/country-afghanistan",	{	type:	"is-in"	});

db.e.save("v/capital-la-paz",	"v/country-bolivia",	{	type:	"is-in"	});

db.e.save("v/capital-luanda",	"v/country-angola",	{	type:	"is-in"	});

db.e.save("v/capital-manama",	"v/country-bahrain",	{	type:	"is-in"	});

db.e.save("v/capital-nassau",	"v/country-bahamas",	{	type:	"is-in"	});

db.e.save("v/capital-n-djamena",	"v/country-chad",	{	type:	"is-in"	});

db.e.save("v/capital-ottawa",	"v/country-canada",	{	type:	"is-in"	});

db.e.save("v/capital-ouagadougou",	"v/country-burkina-faso",	{	type:	"is-in"	});

db.e.save("v/capital-paris",	"v/country-france",	{	type:	"is-in"	});

db.e.save("v/capital-phnom-penh",	"v/country-cambodia",	{	type:	"is-in"	});

db.e.save("v/capital-prague",	"v/country-czech-republic",	{	type:	"is-in"	});

db.e.save("v/capital-quito",	"v/country-ecuador",	{	type:	"is-in"	});

db.e.save("v/capital-saint-john-s",	"v/country-antigua-and-barbuda",	{	type:	"is-in"	});

db.e.save("v/capital-santiago",	"v/country-chile",	{	type:	"is-in"	});

db.e.save("v/capital-sarajevo",	"v/country-bosnia-and-herzegovina",	{	type:	"is-in"	});

db.e.save("v/capital-sofia",	"v/country-bulgaria",	{	type:	"is-in"	});

db.e.save("v/capital-thimphu",	"v/country-bhutan",	{	type:	"is-in"	});

db.e.save("v/capital-tirana",	"v/country-albania",	{	type:	"is-in"	});

db.e.save("v/capital-vienna",	"v/country-austria",	{	type:	"is-in"	});

db.e.save("v/capital-yamoussoukro",	"v/country-cote-d-ivoire",	{	type:	"is-in"	});

db.e.save("v/capital-yaounde",	"v/country-cameroon",	{	type:	"is-in"	});

db.e.save("v/capital-zagreb",	"v/country-croatia",	{	type:	"is-in"	});

Build APIs and simple web applications in ArangoDB

Foxx is an easy way to create APIs and simple web applications from within ArangoDB. It
is inspired by Sinatra, the classy Ruby web framework. If Foxx is Sinatra, ArangoDB's
Actions are the corresponding Rack. They provide all the HTTP goodness.

If you just want to install an existing application, please use the Foxx Manager. If you
want to create your own application, please continue reading.

Overview

An application built with Foxx is written in JavaScript and deployed to ArangoDB directly.
ArangoDB serves this application, you do not need a separate application server.

Think of an Foxx app as a typical web app similar to any other web app using other
technologies. A Foxx app provides one or more URLs, which can either be accessed
directly from the browser or from a backend application written e.g. in Ruby or C#. Other
features include:

Routing: Define arbitrary routes namespaced via the Controllers
Accesses data: Direct access to all data in ArangoDB using simple queries, AQL,
traversals and more
Manipulates data: Create new or manipulate existing entries
Deliver static files like HTML pages, CSS or images directly

The typical request to a Foxx application will work as follows (only conceptually, a lot of
the steps are cached in reality):

1. The request is routed to a Foxx application depending on the mount point
2. The according controller of this application is determined (via something called the

manifest file)
3. The request is then routed to a specific handler in this controller

The handler will now parse the request. This includes determining all parameters from
the body (which is typically JSON encoded) to the path parameters of the URL. It is then
up to you to handle this request and generate a response. In this process you will
probably access the database. This is done via the Repository: This is an entity that is
responsible for a collection and specifically:

Foxx

1. Creating new entries in this collection
2. Modify or delete existing entries in this collection
3. Search for entries in this collection

To represent an entry in this collection it will use a Model, which is a wrapper around the
raw data from the database. Here you can implement helper functions or simple access
methods.

Your first Foxx app in 5 minutes

Let's build an application that sends a plain-text response "Hello YourName!" for all
requests to /dev/my_app/hello/YourName.

First, create a directory apps somewhere in your filesystem. This will be the Foxx
application base directory for your database instance. Let's assume from now on that the
absolute path for this directory is /home/user/apps. When you have created the directory,
create a sub-directory databases in it.

Foxx applications are database-specific, and the databases sub-directory is used to
separate the Foxx applications of different databases running in the same ArangoDB
instance.

Let's assume for now that you are working in the default database (_system), that is used
when no database name is specified otherwise. To use Foxx applications with the
_system database, create a sub-directory _system inside the databases subdirectory. All
Foxx applications for the _system database will go into this directory. Note: to add a Foxx
application for a different databases than _system, use the database's name as the
directory name instead of _system.

Finally, we can add a sub-directory my_app in the _system directory and should end up
with the following directory layout (starting at /home/user in our example):

apps/

		databases/

				_system/

						my_app/

In the my_app directory, create a file named app.js and save the following content in it:

(function()	{

				"use	strict";

				var	Foxx	=	require("org/arangodb/foxx"),

								controller	=	new	Foxx.Controller(applicationContext)

				controller.get("/hello/:name",	function(req,	res)	{

								res.set("Content-Type",	"text/plain");

								res.body	=	"Hello	"	+	req.params("name");

				});	

}());

Beside the app.js we need a manifest file. In order to achieve that, we create a file called
manifest.json in our my_app directory with the following content:

{

		"name":	"my_app",

		"version":	"0.0.1",

		"author":	"me	and	myself",

		"controllers":	{

				"/":	"app.js"

		}

}

You must specify a name and a version number for your application, otherwise it won't
be loaded into ArangoDB.

You should now have the following files and directories with your application (starting at
/home/user in our example):

apps/

		databases/

				_system/

						my_app/

								manifest.json

								app.js

This is your application, and you're ready to use it.

Testing the application

Start ArangoDB as follows:

$	arangod	--javascript.dev-app-path	/home/user/apps	/tmp/fancy_db

If you chose a different directory name, you need to replace /home/user/apps with the
actual directory name of course. Replace /tmp/fancy_db with the directory your database
data is located in.

The command will start the ArangoDB server in a development mode using the
directory /home/user/apps as the workspace and /tmp/fancy_db as your database
directory. In development mode the server automatically reloads all application files on
every request, so changes to the underlying files are visible instantly. Note: if you use the
development mode for the first time or choose a different directory for dev-app-path, it
may be necessary to start ArangoDB with the --upgrade option once. This will initialize
the specified application directory.

Note: the development mode is convenient when developing applications but the
permanent reloading has an impact on performance. Therefore permanent reloading is
only performed in development mode and not in production mode. Whenever you think
your application is ready for production, you can install it using the Foxx manager and
avoid the overhead of reloading.

Now point your browser to localhost:8529/dev/my_app/hello/YourName and you should
see "Hello YourName".

Note: the above and all following examples assume that you are using the default
database (_system).If you use a different database than _system, URLs must be
changed to include the database name, too. For example, if your database name is
mydb, the above URL changes to
localhost:8529/_db/mydb/dev/my_app/hello/YourName. For more information on how to
access specific databases, please refer to Address of a Database.

After this short overview, let's get into the details. There are several example apps
available on Github. You can install them via Foxx manager (covered in the chapter on
Foxx manager) or simply clone them from github.

Start with "hello-foxx" as it contains several basic usage examples. "aye-aye" and "fugu"
are more advanced apps showing how to use Backbone, Underscore and Jquery
together with Foxx. "foxx-authentication" shows how to register users, log in and check
permissions.

https://github.com/arangodb/
https://github.com/arangodb/hello-foxx

In development mode all available applications from the application directory
/home/user/apps/databases// are visible under http:// localhost:8529/dev/ where is the
name of the current database and is the directory name of your application.

In our example, was my_app and as we didn't specify a database, defaulted to _system.

When applications are installed in production mode, you can change the /dev prefix to
whatever you like, see Foxx Manager.

If you do not redefine it, all requests that go to the root of your application (i.e. /) will be
redirected to index.html.

This means that if your application does not provide a file index.html, calling the
application root URL may result in a 404 error. In our example, the application root URL
is http://localhost:8529/dev/my_app/hello/. Call it, and you should something like this in
return:

{

		"error":	true,

		"code":	404,

		"errorNum":	404,

		"errorMessage":	"unknown	path	'dev/my_app/index.html'"

}

To fix that, you can give your app a different default document, e.g. "hello/unknown". The
adjusted manifest now looks like this:

{

		"name":	"my_app",

		"version":	"0.0.1",

		"author":	"me	and	myself",

		"controllers":	{

				"/":	"app.js"

		},

		"defaultDocument":	"hello/unknown"

}

Note: Browsers tend to cache results of redirections. To see the new default document in
effect, first clear your browser's cache and point your browser to http://

Handling Requests

http://localhost:8529/dev/my_app/hello/

localhost:8529/dev/my_app/.

Accessing collections from Foxx

Foxx assumes by default that an application has it's own collections. Accessing
collections directly by name could cause problems, for instance if you had two completely
independent Foxx applications that both access their own collection 'users'.

To prevent such issues, Foxx provides functions that return an application-specific
collection name. For example, applicationContext.collectionName('users') will return the
collection name prefixed with the application name, e.g. "myapp_users". This allows to
have a users collection which is specific for each application.

Additionally, a Foxx controller has a function "collection" that returns a reference to a
collection prefixed like above, in the same way as db. would do. In the example,
controller.collection('users') would return the collection object for the "myapp_users"
collection, and you could use it like any other collection with the db object, e.g.

				controller.collection('users').toArray()	

				controller.collection('users').save(...)	

				controller.collection('users').remove(...)	

				controller.collection('users').replace(...)

Of course you still use any collection directly with the db object even from Foxx. To
access an collection called "movies" this could be one solution:

app.get("/all",	function(req,	res)	{	

				var	db	=	require("org/arangodb").db;	

				res.json({	movies:	db.movies.toArray()	});	

});

Of course this completely bypasses prefixing and repositories, but works well especially
for quick tests or shared collections that are NOT application-specific.

Then there are Foxx repositories. These are objects that you can create to hide the
internals of the database access from the application so that the application will just use
the repository but not the database.

A repository is an object that wrap access to a collection (or multiple collections if you
want), whereas controller.collection returns the collection itself. That's the main
difference.

To return a list of users from a controller using a repository, you could use it like this:

				var	foxx	=	require("org/arangodb/foxx");	

				var	db	=	require("org/arangodb").db;	

				var	usersRepo	=	new	foxx.Repository(db._collection("users"));	

				app.get("/all",	function(req,	res)	{	

							res.json({	users:	usersRepo.collection.toArray()	});	

				});

Of course you can create your own methods in the repository to add extra functionality.

Application Context

JavaScript modules within a Foxx application can access the application using the
variable applicationContext. The applicationContext provides the following methods:

	applicationContext.collectionName(name)	

This returns the collection name with the application.

	applicationContext.foxxFilename(filename)	

This returns the path to a file within the Foxx directory.

	require(name)	

This will first look into the Foxx directory for a module named name. If no such module
can be found, the global module paths are consulted.

In the manifest.json you define the components of your application. The content is a
JSON object with the following attributes (not all attributes are required though):

assets: Deliver pre-processed files
author: The author name
contributors: An array containing objects, each represents a contributor (with name
and optional email)
controllers: Map routes to FoxxControllers
exports: Map names to Foxx exports
defaultDocument: The default document when the applicated root (/) is called
(defaults to index.html)
description: A short description of the application (Meta information)
engines: Should be an object with arangodb set to the ArangoDB version your Foxx
app is compatible with.
files: Deliver files
isSystem: Mark an application as a system application
keywords: An array of keywords to help people find your Foxx app
lib: Base path for all required modules
license: Short form of the license (MIT, GPL...)
name: Name of the application (Meta information)
repository: An object with information about where you can find the repository: type
and url
setup: Path to a setup script
teardown: Path to a teardown script
thumbnail: Path to a thumbnail that represents the application (Meta information)
version: Current version of the application (Meta information)

If you install an application using the Foxx manager or are using the development mode,
your manifest will be checked for completeness and common errors. You should have a
look at the server log files after changing a manifest file to get informed about potential
errors in the manifest.

A more complete example for a Manifest file:

{

		"name":	"my_website",

		"version":	"1.2.1",

The Manifest File

		"description":	"My	Website	with	a	blog	and	a	shop",

		"thumnail":	"images/website-logo.png",

		"controllers":	{

				"/blog":	"apps/blog.js",

				"/shop":	"apps/shop.js"

		},

		"lib":	"lib",

		"files":	{

				"/images":	"images"

		},

		"assets":	{

				"application.js":	{

						"files":	[

								"vendor/jquery.js",

								"assets/javascripts/*"

]

				}

		},

		"setup":	"scripts/setup.js",

		"teardown":	"scripts/teardown.js"

}

The setup and teardown scripts

You can provide a path to a JavaScript file that prepares ArangoDB for your application
(or respectively removes it entirely). These scripts have access to appCollection and
appCollectionName. Use the setup script to create all collections your application needs
and fill them with initial data if you want to. Use the teardown script to remove all
collections you have created.

Note: the setup script is called on each request in the development mode. If your
application needs to set up specific collections, you should always check in the setup
script whether they are already there.

The teardown script is called when an application is uninstalled. It is good practice to
drop any collections in the teardown script that the application used exclusively, but this
is not enforced. Maybe there are reasons to keep application data even after removing an
application. It's up to you to decide what to do.

controllers is an object that matches routes to files

The key is the route you want to mount at

The value is the path to the JavaScript file containing the FoxxController you want to

mount

You can add multiple controllers in one manifest this way.

The files

Deliver all files in a certain folder without modifying them. You can deliver text files as
well as binaries:

"files":	{

		"/images":	"images"

}

The assets

The value for the asset key is an object consisting of paths that are matched to the files
they are composed of. Let's take the following example:

"assets":	{

		"application.js":	{

				"files":	[

						"vendor/jquery.js",

						"assets/javascripts/*"

]

		}

}

If a request is made to /application.js (in development mode), the file array provided will
be processed one element at a time. The elements are paths to files (with the option to
use wildcards). The files will be concatenated and delivered as a single file.

The content-type (or mime type) of the HTTP response when requesting application.js is
automatically determined by looking at the filename extension in the asset name
(application.js in the above example). If the asset does not have a filename extension,
the content-type is determined by looking at the filename extension of the first file in the
files list. If no file extension can be determined, the asset will be delivered with a content-
type of text/plain.

It is possible to explicitly override the content-type for an asset by setting the optional
contentType attribute of an asset as follows:

"assets":	{

		"myincludes":	{

				"files":	[

						"vendor/jquery.js",

						"assets/javascripts/*"

],

				"contentType":	"text/javascript"

		}

}

Create

	new	FoxxController(applicationContext,	options)	

This creates a new Controller. The first argument is the controller context available in the
variable applicationContext. The second one is an options array with the following
attributes:

urlPrefix: All routes you define within will be prefixed with it.

Examples

app	=	new	Controller(applicationContext,	{

		urlPrefix:	"/meadow"

});

Get

	FoxxController#get(path,	callback)	

This handles requests from the HTTP verb get.

When defining a route you can also define a so called 'parameterized' path like
/goose/:barn. In this case you can later get the value the user provided for barn via the
params function (see the Request object).

Examples

app.get('/goose/barn',	function	(req,	res)	{

		//	Take	this	request	and	deal	with	it!

});

Head

	FoxxController#head(path,	callback)	

Details on FoxxController

HTTP Methods

This handles requests from the HTTP verb head. You have to give a function as callback.
It will get a request and response object as its arguments Post

	FoxxController#post(path,	callback)	

This handles requests from the HTTP verb post. See above for the arguments you can
give.

Examples

app.post('/goose/barn',	function	(req,	res)	{

		//	Take	this	request	and	deal	with	it!

});

Put

	FoxxController#put(path,	callback)	

This handles requests from the HTTP verb put. See above for the arguments you can
give.

Examples

app.put('/goose/barn',	function	(req,	res)	{

		//	Take	this	request	and	deal	with	it!

});

Patch

	FoxxController#patch(path,	callback)	

This handles requests from the HTTP verb patch. See above for the arguments you can
give.

Examples

app.patch('/goose/barn',	function	(req,	res)	{

		//	Take	this	request	and	deal	with	it!

});

Delete

	FoxxController#delete(path,	callback)	

This handles requests from the HTTP verb delete. See above for the arguments you can
give.

Warning: Do not forget that delete is a reserved word in JavaScript and therefore needs
to be called as app['delete']. There is also an alias del for this very reason.

Examples

app['delete']('/goose/barn',	function	(req,	res)	{

		//	Take	this	request	and	deal	with	it!

});

app.del('/goose/barn',	function	(req,	res)	{

		//	Take	this	request	and	deal	with	it!

});

If you now want to document your route, you can use JSDoc style comments (a multiline
comment block with the first line starting with /** instead of /*) above your routes to do
that:

/**	Get	all	foxxes

		*	

		*	If	you	want	to	get	all	foxxes,	please	use	this

		*	method	to	do	that.

		*/

app.get("/foxxes",	function	()	{

		//	...

});

The first line will be treated as a summary (For optical reasons in the produced
documentation, the summary is restricted to 60 characters). All following lines will be
treated as additional notes shown in the detailed view of the route documentation. With
the provided information, Foxx will generate a nice documentation for you. Furthermore
you can describe your API by chaining the following methods onto your path definition:

Path Param

Documenting and constraining a specific
route

If you defined a route "/foxx/:id", you can constrain which format a path parameter
(/foxx/12) can have by giving it a joi type.

For more information on joi see the official Joi documentation.

You can also provide a description of this parameter.

Examples

app.get("/foxx/:id",	function	{

		//	Do	something

}).pathParam("id",	type:	joi.number().integer().required().description("Id	of	the	Foxx"

You can also pass in a configuration object instead:

app.get("/foxx/:id",	function	{

		//	Do	something

}).pathParam("id",	{

		type:	joi.number().integer(),

		required:	true,

		description:	"Id	of	the	Foxx"

});

Query Param

	FoxxController#queryParam(id,	options)	

Describe a query parameter:

If you defined a route "/foxx", you can constrain which format a query parameter (/foxx?
a=12) can have by giving it a joi type.

For more information on joi see the official Joi documentation.

You can also provide a description of this parameter and whether you can provide the
parameter multiple times.

Examples

app.get("/foxx",	function	{

		//	Do	something

}).queryParam("id",

https://github.com/spumko/joi
https://github.com/spumko/joi

		joi.number().integer()

		.required()

		.description("Id	of	the	Foxx")

		.meta({allowMultiple:	false})

});

You can also pass in a configuration object instead:

app.get("/foxx",	function	{

		//	Do	something

}).queryParam("id",	{

		type:	joi.number().integer().required().description("Id	of	the	Foxx"),

		allowMultiple:	false

});

Body Param

	FoxxController#bodyParam(paramName,	options)	

Expect the body of the request to be a JSON with the attributes you annotated in your
model. It will appear alongside the provided description in your Documentation. This will
initialize a Model with the data and provide it to you via the params as paramName. For
information about how to annotate your models, see the Model section. If you provide the
Model in an array, the response will take multiple models instead of one.

If you wrap the provided model in an array, the body param is always an array and
accordingly the return value of the params for the body call will also return an array of
models.

The behavior of bodyParam changes depending on the rootElement option set in the
manifest. If it is set to true, it is expected that the body is an object with a key of the same
name as the paramName argument. The value of this object is either a single object or in
the case of a multi element an array of objects.

Examples

app.post("/foxx",	function	(req,	res)	{

		var	foxxBody	=	req.parameters.foxxBody;

		//	Do	something	with	foxxBody

}).bodyParam("foxxBody",	{

		description:	"Body	of	the	Foxx",

		type:	FoxxBodyModel

});

Error Response

	FoxxController#errorResponse(errorClass,	code,	description)	

Define a reaction to a thrown error for this route: If your handler throws an error of the
defined errorClass, it will be caught and the response will have the given status code and
a JSON with error set to your description as the body.

If you want more control over the returned JSON, you can give an optional fourth
parameter in form of a function. It gets the error as an argument, the return value will
transformed into JSON and then be used as the body. The status code will be used as
described above. The description will be used for the documentation.

It also adds documentation for this error response to the generated documentation.

Examples

/*	define	our	own	error	type,	FoxxyError	*/

var	FoxxyError	=	function	(message)	{

		this.message	=	"the	following	FoxxyError	occurred:	'	+	message;

};

FoxxyError.prototype	=	new	Error();

app.get("/foxx",	function	{

		/*	throws	a	FoxxyError	*/

		throw	new	FoxxyError();

}).errorResponse(FoxxyError,	303,	"This	went	completely	wrong.	Sorry!");

app.get("/foxx",	function	{

		throw	new	FoxxyError("oops!");

}).errorResponse(FoxxyError,	303,	"This	went	completely	wrong.	Sorry!",	function	(e)	{

		return	{

				code:	123,

				desc:	e.message

		};

});

onlyif

	FoxxController#onlyIf(check)	

Provide it with a function that throws an exception if the normal processing should not be
executed. Provide an 	errorResponse	 to define the behavior in this case. This can be used
for authentication or authorization for example.

Examples

app.get("/foxx",	function	{

		//	Do	something

}).onlyIf(aFunction).errorResponse(ErrorClass,	303,	"This	went	completely	wrong.	Sorry!"

onlyIfAuthenticated

	FoxxController#onlyIf(code,	reason)	

Please activate sessions for this app if you want to use this function. Or activate
authentication (deprecated). If the user is logged in, it will do nothing. Otherwise it will
respond with the status code and the reason you provided (the route handler won't be
called). This will also add the according documentation for this route.

Examples

app.get("/foxx",	function	{

		//	Do	something

}).onlyIfAuthenticated(401,	"You	need	to	be	authenticated");

In addition to documenting a specific route, you can also do the same for all routes of a
controller. For this purpose use the allRoutes object of the according controller. The
following methods are available.

Buffer Error Response

	RequestContextBuffer#errorResponse(errorClass,	code,	description)	

Defines an errorResponse for all routes of this controller. For details on errorResponse
see the according method on routes.

Examples

app.allroutes.errorResponse(FoxxyError,	303,	"This	went	completely	wrong.	Sorry!");

app.get("/foxx",	function	{

Documenting and constraining all routes

		//	Do	something

});

Buffer onlyIf

	RequestContextBuffer#onlyIf(code,	reason)	

Defines an onlyIf for all routes of this controller. For details on onlyIf see the according
method on routes.

Examples

app.allroutes.onlyIf(myPersonalCheck);

app.get("/foxx",	function	{

		//	Do	something

});

Buffer onlyIfAuthenticated

	RequestContextBuffer#errorResponse(errorClass,	code,	description)	

Defines an onlyIfAuthenticated for all routes of this controller. For details on
onlyIfAuthenticated see the according method on routes.

Examples

app.allroutes.onlyIfAuthenticated(401,	"You	need	to	be	authenticated");

app.get("/foxx",	function	{

		//	Do	something

});

You can use the following two functions to do something before or respectively after the
normal routing process is happening. You could use that for logging or to manipulate the
request or response (translate it to a certain format for example).

Before and After Hooks

Before

	FoxxController#before(path,	callback)	

The before function takes a path on which it should watch and a function that it should
execute before the routing takes place. If you do omit the path, the function will be
executed before each request, no matter the path. Your function gets a Request and a
Response object.

If your callback returns the Boolean value false, the route handling will not proceed. You
can use this to intercept invalid or unauthorized requests and prevent them from being
passed to the matching routes.

Examples

app.before('/high/way',	function(req,	res)	{

		//Do	some	crazy	request	logging

});

After

	FoxxController#after(path,	callback)	

This works pretty similar to the before function. But it acts after the execution of the
handlers (Big surprise, I suppose).

Examples

app.after('/high/way',	function(req,	res)	{

		//Do	some	crazy	response	logging

});

Around

	FoxxController#around(path,	callback)	

The around function takes a path on which it should watch and a function that it should
execute around the function which normally handles the route. If you do omit the path,
the function will be executed before each request, no matter the path. Your function gets
a Request and a Response object and a next function, which you must call to execute the
handler for that route.

Examples

app.around('/high/way',	function(req,	res,	opts,	next)	{

		//Do	some	crazy	request	logging

		next();

		//Do	some	more	crazy	request	logging

});

When you have created your FoxxController you can now define routes on it. You provide
each with a function that will handle the request. It gets two arguments (four, to be
honest. But the other two are not relevant for now):

The request object
The response object

These objects are provided by the underlying ArangoDB actions and enhanced by the
BaseMiddleware provided by Foxx.

The Request Object

The request object inherits several attributes from the underlying Actions:

compatibility: an integer specifying the compatibility version sent by the client (in
request header x-arango-version). If the client does not send this header, ArangoDB
will set this to the minimum compatible version number. The value is 10000 major +
100 minor (e.g. 10400 for ArangoDB version 1.4).

user: the name of the current ArangoDB user. This will be populated only if
authentication is turned on, and will be null otherwise.

database: the name of the current database (e.g. _system)

protocol: http or https

server: a JSON object with sub-attributes address (containing server host name or IP
address) and port (server port).

path: request URI path, with potential database name stripped off.

The Request and Response Objects

url: request URI path + query string, with potential database name stripped off

headers: a JSON object with the request headers as key/value pairs

cookies: a JSON object with the request cookies as key/value pairs

requestType: the request method (e.g. "GET", "POST", "PUT", ...)

requestBody: the complete body of the request as a string

parameters: a JSON object with all parameters set in the URL as key/value pairs

urlParameters: a JSON object with all named parameters defined for the route as
key/value pairs.

In addition to these attributes, a Foxx request objects provides the following convenience
methods:

Body

	request.body()	

Get the JSON parsed body of the request. If you need the raw version, please refer to the
rawBody function. rawBody

	request.rawBody()	

The raw request body, not parsed. The body is returned as a UTF-8 string. Note that this
can only be used sensibly if the request body contains valid UTF-8. If the request body is
known to contain non-UTF-8 data, the request body can be accessed by using
	request.rawBodyBuffer	. Params

	request.params(key)	

Get the parameters of the request. This process is two-fold:

If you have defined an URL like /test/:id and the user requested /test/1, the call
params("id") will return 1.
If you have defined an URL like /test and the user gives a query component, the
query parameters will also be returned. So for example if the user requested /test?
a=2, the call params("a") will return 2.

The Response Object

Every response object has the body attribute from the underlying Actions to set the raw
body by hand.

You provide your response body as a string here.

Response Status

	response.status(code)	

Set the status code of your response, for example:

Examples

response.status(404);

Response Set

	response.set(key,	value)	

Set a header attribute, for example:

Examples

response.set("Content-Length",	123);

response.set("Content-Type",	"text/plain");

or alternatively:

response.set({

		"Content-Length":	"123",

		"Content-Type":	"text/plain"

});

Response Json

	response.json(object)	

Set the content type to JSON and the body to the JSON encoded object you provided.

Examples

response.json({'born':	'December	12,	1915'});

Access to Foxx applications is controlled by the regular authentication mechanisms
present in ArangoDB. The server can be run with or without HTTP authentication.

If authentication is turned on, then every access to the server is authenticated via HTTP
authentication. This includes Foxx applications. The global authentication can be toggled
via the configuration option.

If global HTTP authentication is turned on, requests to Foxx applications will require
HTTP authentication too, and only valid users present in the _users system collection are
allowed to use the applications.

Since ArangoDB 1.4, there is an extra option to restrict the authentication to just system
API calls, such as /_api/... and /_admin/.... This option can be turned on using the
"server.authenticate-system-only" configuration option. If it is turned on, then only system
API requests need authentication whereas all requests to Foxx applications and routes
will not require authentication.

This is recommended if you want to disable HTTP authentication for Foxx applications
but still want the general database APIs to be protected with HTTP authentication.

If you need more fine grained control over the access to your Foxx application, we built
an authentication system you can use. Currently we only support cookie-based
authentication, but we will add the possibility to use Auth Tokens and external OAuth
providers in the near future. Of course you can roll your own authentication mechanism if
you want to, and you can do it in an application-specific way if required.

To use the per-application authentication, you should first turn off the global HTTP
authentication (or at least restrict it to system API calls as mentioned above). Otherwise
clients will need HTTP authentication and need additional authentication by your Foxx
application.

To have global HTTP authentication turned on for system APIs but turned off for Foxx,
your server startup parameters should look like this:

--server.disable-authentication	false	--server.authenticate-system-only	true

Controlling Access to Foxx Applications

Note: During development, you may even turn off HTTP authentication completely:

--server.disable-authentication	true	--server.authenticate-system-only	true

Please keep in mind that turning HTTP authentication off completely will allow
unauthenticated access by anyone to all API functions, so do not use this is production.

Now it's time to configure the application-specific authentication. We built a small demo
application to demonstrate how this works.

To use the application-specific authentication in your own app, first activate it in your
controller.

Active Authentication

	FoxxController#activateAuthentication(opts)	

To activate authentication for this authentication, first call this function. Provide the
following arguments:

type: Currently we only support cookie, but this will change in the future
cookieLifetime: An integer. Lifetime of cookies in seconds
cookieName: A string used as the name of the cookie
sessionLifetime: An integer. Lifetime of sessions in seconds

Examples

app.activateAuthentication({

		type:	"cookie",

		cookieLifetime:	360000,

		cookieName:	"my_cookie",

		sessionLifetime:	400,

});

Login

	FoxxController#login(path,	opts)	

Add a route for the login. You can provide further customizations via the the options:

https://github.com/arangodb/foxx-authentication

usernameField and passwordField can be used to adjust the expected attributes in
the post request. They default to username and password.
onSuccess is a function that you can define to do something if the login was
successful. This includes sending a response to the user. This defaults to a function
that returns a JSON with user set to the identifier of the user and
key set to the session key.
onError is a function that you can define to do something if the login did not work.
This includes sending a response to the user. This defaults to a function that sets the
response to 401 and returns a JSON with error set to "Username or Password was
wrong".

Both onSuccess and onError should take request and result as arguments.

Examples

app.login('/login',	{

		onSuccess:	function	(req,	res)	{

				res.json({"success":	true});

		}

});

Logout

	FoxxController#logout(path,	opts)	

This works pretty similar to the logout function and adds a path to your app for the logout
functionality. You can customize it with a custom onSuccess and onError function:

onSuccess is a function that you can define to do something if the logout was
successful. This includes sending a response to the user. This defaults to a function
that returns a JSON with message set to "logged out".
onError is a function that you can define to do something if the logout did not work.
This includes sending a response to the user. This defaults to a function that sets the
response to 401 and returns a JSON with error set to "No session was found".

Both onSuccess and onError should take request and result as arguments.

Examples

app.logout('/logout',	{

		onSuccess:	function	(req,	res)	{

				res.json({"message":	"Bye,	Bye"});

		}

});

Register

	FoxxController#register(path,	opts)	

This works pretty similar to the logout function and adds a path to your app for the
register functionality. You can customize it with a custom `nSuccess and onError
function:

onSuccess is a function that you can define to do something if the registration was
successful. This includes sending a response to the user. This defaults to a function
that returns a JSON with user set to the created user document.
onError is a function that you can define to do something if the registration did not
work. This includes sending a response to the user. This defaults to a function that
sets the response to 401 and returns a JSON with error set to "Registration failed".

Both onSuccess and onError should take request and result as arguments.

You can also set the fields containing the username and password via usernameField
(defaults to username) and passwordField (defaults to password). If you want to accept
additional attributes for the user document, use the option acceptedAttributes and set it to
an array containing strings with the names of the additional attributes you want to accept.
All other attributes in the request will be ignored.

If you want default attributes for the accepted attributes or set additional fields (for
example admin) use the option defaultAttributes which should be a hash mapping
attribute names to default values.

Examples

app.register('/logout',	{

		acceptedAttributes:	['name'],

		defaultAttributes:	{

				admin:	false

		}

});

Change Password

FoxxController#changePassword(route, opts)`

Add a route for the logged in user to change the password. You can provide further
customizations via the the options:

passwordField can be used to adjust the expected attribute in the post request. It
defaults to password.
onSuccess is a function that you can define to do something if the change was
successful. This includes sending a response to the user. This defaults to a function
that returns a JSON with notice set to "Changed password!".
onError is a function that you can define to do something if the login did not work.
This includes sending a response to the user. This defaults to a function that sets the
response to 401 and returns a JSON with error set to "No session was found".

Both onSuccess and onError should take request and result as arguments.

Examples

app.changePassword('/changePassword',	{

		onSuccess:	function	(req,	res)	{

				res.json({"success":	true});

		}

});

Restricting routes

To restrict routes, see the documentation for Documenting and Restraining the routes.

The model doesn't know anything about the database. It is just a representation of the
data as an JavaScript object. You can add and overwrite the methods of the prototype in
your model prototype via the object you give to extend. In your model file, export the
model as model.

var	Foxx	=	require("org/arangodb/foxx");

var	TodoModel	=	Foxx.Model.extend({

});

exports.model	=	TodoModel;

A Foxx Model can be initialized with an object of attributes and their values.

There's also the possibility of annotation: If you extend the model with a schema property,
the model's attributes will be validated against it.

You can define attributes in the schema using the bundled joi library. For more
information on the syntax see the official joi documentation.

var	Foxx	=	require("org/arangodb/foxx");

var	joi	=	require("joi");

var	PersonModel	=	Foxx.Model.extend({

				schema:	{

								name:	joi.string().required(),

								age:	joi.number().integer(),

								active:	joi.boolean().default(true)

				}

});

exports.model	=	TodoModel;

This has two effects: On the one hand it provides documentation. If you annotated your
model, you can use it in the bodyParam method for documentation. On the other hand it
will influence the behavior of the constructor: If you provide an object to the constructor, it
will validate its attributes and set the special errors property. This is especially useful if
you want to to initialize the Model from user input. On the other hand it will set the default
value for all attributes that have not been set by hand. An example:

Details on FoxxModel

https://github.com/spumko/joi

var	person	=	new	PersonModel({

		name:	"Pete",

		admin:	true

});

person.attributes	//	=>	{	name:	"Pete",	admin:	true,	active:	true	}

person.errors	//	=>	{admin:	[ValidationError:	value	is	not	allowed]}

Extend

	FoxxModel#extend(instanceProperties,	classProperties)	

Extend the Model prototype to add or overwrite methods. The first object contains the
properties to be defined on the instance, the second object those to be defined on the
prototype. Initialize

	new	FoxxModel(data)	

If you initialize a model, you can give it initial data as an object.

Examples

instance	=	new	Model({

		a:	1

});

Get

	FoxxModel#get(name)	

Get the value of an attribute

Examples

instance	=	new	Model({

		a:	1

});

instance.get("a");

Set

	FoxxModel#set(name,	value)	

Set the value of an attribute or multiple attributes at once

Examples

instance	=	new	Model({

		a:	1

});

instance.set("a",	2);

instance.set({

		b:	2

});

Has

	FoxxModel#has(name)	

Returns true if the attribute is set to a non-null or non-undefined value.

Examples

instance	=	new	Model({

		a:	1

});

instance.has("a");	//=>	true

instance.has("b");	//=>	false

isValid

	model.isValid	

The isValid flag indicates whether the model's state is currently valid. If the model does
not have a schema, it will always be considered valid. Errors

	model.errors	

The errors property maps the names of any invalid attributes to their corresponding
validation error. Attributes

	model.attributes	

The attributes property is the internal hash containing the model's state. forDB

	FoxxModel#forDB()	

Return a copy of the model which can be saved into ArangoDB forClient

	FoxxModel#forClient()	

Return a copy of the model which you can send to the client.

A repository is a gateway to the database. It gets data from the database, updates it or
saves new data. It uses the given model when it returns a model and expects instances
of the model for methods like save. In your repository file, export the repository as
repository.

var	Foxx	=	require("org/arangodb/foxx");

var	TodosRepository	=	Foxx.Repository.extend({

});

exports.repository	=	TodosRepository;

Initialize

	new	FoxxRepository(collection,	opts)	

Create a new instance of Repository.

A Foxx Repository is always initialized with a collection object. You can get your
collection object by asking your Foxx.Controller for it: the collection method takes the
name of the collection (and will prepend the prefix of your application). It also takes two
optional arguments:

1. Model: The prototype of a model. If you do not provide it, it will default to Foxx.Model
2. Prefix: You can provide the prefix of the application if you need it in your Repository

(for some AQL queries probably)

Examples

instance	=	new	Repository(appContext.collection("my_collection"));

//	or:

instance	=	new	Repository(appContext.collection("my_collection"),	{

		model:	MyModelPrototype,

		prefix:	app.collectionPrefix,

});

Details on FoxxRepository

Attributes of a Repository

Collection

The wrapped ArangoDB collection object. ModelPrototype

The prototype of the according model. Prefix

The prefix of the application. This is useful if you want to construct AQL queries for
example.

Repository can take care of ensuring the existence of collection indexes for you. If you
define indexes for a repository, instances of the repository will have access to additional
index-specific methods like range or fulltext (see below).

The syntax for defining indexes is the same used in collection.ensureIndex.

Examples

var	Foxx	=	require('org/arangodb/foxx');

var	FulltextRepository	=	Foxx.Repository.extend({

				indexes:	[

								{

												type:	'fulltext',

												fields:	['text'],

												minLength:	3

								}

]

});

Adding entries to the repository

	FoxxRepository#save(model)	

Saves a model into the database. Expects a model. Will set the ID and Rev on the model.
Returns the model.

Examples

Defining indexes

Methods of a Repository

repository.save(my_model);

Finding entries in the repository

	FoxxRepository#byId(id)	

Returns the model for the given ID.

Examples

var	myModel	=	repository.byId('test/12411');

myModel.get('name');

	FoxxRepository#byExample(example)	

Returns an array of models for the given ID.

Examples

var	myModel	=	repository.byExample({	amazing:	true	});

myModel[0].get('name');

	FoxxRepository#firstExample(example)	

Returns the first model that matches the given example.

Examples

var	myModel	=	repository.firstExample({	amazing:	true	});

myModel.get('name');

	FoxxRepository#all()	

Returns an array of models that matches the given example. You can provide both a skip
and a limit value.

Warning: ArangoDB doesn't guarantee a specific order in this case, to make this really
useful we have to explicitly provide something to order by.

Parameter

options (optional):
skip (optional): skips the first given number of models.
limit (optional): only returns at most the given number of models.

Examples

var	myModel	=	repository.all({	skip:	4,	limit:	2	});

myModel[0].get('name');

Removing entries from the repository

	FoxxRepository#remove(model)	

Remove the model from the repository. Expects a model.

Examples

repository.remove(myModel);

	FoxxRepository#removeById(id)	

Remove the document with the given ID. Expects an ID of an existing document.

Examples

repository.removeById('test/12121');

	FoxxRepository#removeByExample(example)	

Find all documents that fit this example and remove them.

Examples

repository.removeByExample({	toBeDeleted:	true	});

Replacing entries in the repository

	FoxxRepository#replace(model)	

Find the model in the database by its _id and replace it with this version. Expects a
model. Sets the revision of the model. Returns the model.

Examples

myModel.set('name',	'Jan	Steemann');

repository.replace(myModel);

	FoxxRepository#replaceById(id,	object)	

Find the item in the database by the given ID and replace it with the given object's
attributes.

If the object is a model, updates the model's revision and returns the model.

Examples

repository.replaceById('test/123345',	myNewModel);

	FoxxRepository#replaceByExample(example,	object)	

Find every matching item by example and replace it with the attributes in the provided
object.

Examples

repository.replaceByExample({	replaceMe:	true	},	myNewModel);

Updating entries in the repository

	FoxxRepository#updateById(id,	object)	

Find an item by ID and update it with the attributes in the provided object.

If the object is a model, updates the model's revision and returns the model.

Examples

repository.updateById('test/12131',	{	newAttribute:	'awesome'	});

	FoxxRepository#updateByExample(example,	object)	

Find every matching item by example and update it with the attributes in the provided
object.

Examples

repository.updateByExample({	findMe:	true	},	{	newAttribute:	'awesome'	});

Counting entries in the repository

	FoxxRepository#count()	

Returns the number of entries in this collection.

Examples

repository.count();

Index-specific repository methods

	FoxxRepository#range(attribute,	left,	right)	

Returns all models in the repository such that the attribute is greater than or equal to left
and strictly less than right.

For range queries it is required that a skiplist index is present for the queried attribute. If
no skiplist index is present on the attribute, the method will not be available.

Parameter

attribute: attribute to query.
left: lower bound of the value range (inclusive).
right: upper bound of the value range (exclusive).

Examples

repository.range("age",	10,	13);

	FoxxRepository#near(latitude,	longitude,	options)	

Finds models near the coordinate (latitude, longitude). The returned list is sorted by
distance with the nearest model coming first.

For geo queries it is required that a geo index is present in the repository. If no geo index
is present, the methods will not be available.

Parameter

latitude: latitude of the coordinate.
longitude: longitude of the coordinate.
options (optional):

geo (optional): name of the specific geo index to use.
distance (optional): If set to a truthy value, the returned models will have an
additional property containing the distance between the given coordinate and
the model. If the value is a string, that value will be used as the property name,
otherwise the name defaults to "distance".
limit (optional): number of models to return. Defaults to 100.

Examples

repository.near(0,	0,	{geo:	"home",	distance:	true,	limit:	10});

	FoxxRepository#within(latitude,	longitude,	radius,	options)	

Finds models within the distance radius from the coordinate (latitude, longitude). The
returned list is sorted by distance with the nearest model coming first.

For geo queries it is required that a geo index is present in the repository. If no geo index
is present, the methods will not be available.

Parameter

latitude: latitude of the coordinate.
longitude: longitude of the coordinate.
radius: maximum distance from the coordinate.
options (optional):

geo (optional): name of the specific geo index to use.
distance (optional): If set to a truthy value, the returned models will have an

additional property containing the distance between the given coordinate and
the model. If the value is a string, that value will be used as the property name,
otherwise the name defaults to "distance".
limit (optional): number of models to return. Defaults to 100.

Examples

repository.within(0,	0,	2000	*	1000,	{geo:	"home",	distance:	true,	limit:	10});

	FoxxRepository#fulltext(attribute,	query,	options)	

Returns all models whose attribute attribute matches the search query query.

In order to use the fulltext method, a fulltext index must be defined on the repository. If
multiple fulltext indexes are defined on the repository for the attribute, the most capable
one will be selected. If no fulltext index is present, the method will not be available.

Parameter

attribute: model attribute to perform a search on.
query: query to match the attribute against.
options (optional):

limit (optional): number of models to return. Defaults to all.

Examples

repository.fulltext("text",	"word",	{limit:	1});

When a Foxx application is ready to be used in production, it is time to leave the
development mode and deploy the app in a production environment.

The first step is to copy the application's script directory to the target ArangoDB server. If
your development and production environment are the same, there is nothing to do. If
production runs on a different server, you should copy the development application
directory to some temporary place on the production server.

When the application code is present on the production server, you can use the fetch and
mount commands from the Foxx Manager to register the application in the production
ArangoDB instance and make it available.

Here are the individual steps to carry out:

development:

cd into the directory that application code is in. Then create a tar.gz file with the
application code (replace app with the actual name):

cd	/path/to/development/apps/directory

tar	cvfz	app.tar.gz	app

copy the tar.gz file to the production server:

scp	app.tar.gz	production:/tmp/

production:

create a temporary directory, e.g. /tmp/apps and extract the tar archive into this
directory:

mkdir	/tmp/apps

cd	/tmp/apps

tar	xvfz	/tmp/app.tar.gz

Deploying a Foxx application

start the ArangoDB shell and run the following commands in it:

fm.fetch("directory",	"/tmp/apps/app");

fm.mount("app",	"/app");

More information on how to deploy applications from different sources can be found in
the Foxx Manager.

While developing a Foxx application, it is recommended to use the development mode.
The development mode makes ArangoDB reload all components of all Foxx applications
on every request. While this has a negative impact on performance, it allows to view and
debug changes in the application instantly. It is not recommended to use the
development mode in production.

During development it is often necessary to log some debug output. ArangoDB provides
a few mechanisms for this:

using console.log: ArangoDB provides the console module, which you can use from
within your Foxx application like this:

require("console").log(value);

The console module will log all output to ArangoDB's logfile. If you are not redirecting
to log output to stdout, it is recommended that you follow ArangoDB's logfile using a
tail -f command or something similar. Please refer to JSModuleConsole for details.

using internal.print: The print method of the internal module writes data to the
standard output of the ArangoDB server process. If you have start ArangoDB
manually and do not run it as an (unattended) daemon, this is a convenient method:

require("internal").print(value);

tapping requests / responses: Foxx allows to tap incoming requests and outgoing
responses using the before and after hooks. To print all incoming requests to the
stdout of the ArangoDB server process, you could use some code like this in your
controller:

controller.before("/*",	function	(req,	res)	{

		require("internal").print(req);

});

Of course you can also use console.log or any other means of logging output.

Developing an Application

If you start ArangoDB with the option --javascript.dev-app-path followed by the path to an
app directory (see below) and then the path to the database, you are starting ArangoDB
in development mode with the application loaded.

This means that on every request:

1. All routes are dropped
2. All module caches are flushed
3. Your manifest file is read
4. All files in your lib folder are loaded
5. An app in DIRNAME is mounted at /dev/DIRNAME
6. The request will be processed

This means that you do not have to restart ArangoDB if you change anything in your app.
It is of course not meant for production, because the reloading makes the app relatively
slow.

The app directory has to be structured as follows:

└──	databases

				├──	_system

				│			├──	foxx_app_1

				│			├──	foxx_app_2

				│			└──	foxx_app_3

				└──	my_db

								└──	foxx_app_4

In this case you would have four foxx apps booted, three in the _system database and
one in the my_db database.

To run a Foxx app in production first copy your app code to the directory given in the
config variable --javascript.app-path. After that use Foxx manager to mount the app. You
can also use Foxx manager to find out your current app-path.

Development Mode

Production Mode

If you have runtime dependencies you want to access in your route handlers but don't
want to define at load time (e.g. dependencies between multiple Foxx apps),
FoxxController allows you to inject these dependencies into your route handlers by
adding injectors to it.

Registers a dependency factory with the controller.

	controller.addInjector(name,	factory)	

The injected dependency will be available as a property with the chosen name on the
third argument passed to each route handler.

If factory is a function, it will be called the first time a route of that controller is handled
and its result will be injected into each route handler. Otherwise the value will be injected
as it is.

If you want to inject a function as a dependency, you need to wrap it in a function.

Parameter

name: the name under which the dependency will be available in the route handler.
factory: a function returning the dependency or an arbitrary value that will be passed
as-is.

Examples

function	myFunc()	{

				return	'Hello';

}

controller.addInjector('something',	function()	{return	2;});

controller.addInjector('other',	'just	a	string');

controller.addInjector('fn',	function()	{return	myFunc;});

controller.get('/some/route',	function(request,	response,	injected)	{

				response.json({

								something:	injected.something,	//	2

								other:	injected.other,	//	'just	a	string'

								fn:	injected.fn.name	//	'myFunc'

Foxx Dependency Injection

Add an injector

				});

});

Registers multiple dependency factories with the controller.

	controller.addInjector(object)	

Equivalent to calling addInjector(name, value) for each property of the object.

Parameter

object: an object mapping dependency names to dependency factories.

Examples

function	myFunc()	{

				return	'Hello';

}

controller.addInjector({

				something:	function()	{return	2;},

				other:	'just	a	string',

				fn:	function()	{return	myFunc;}

});

controller.get('/some/route',	function(request,	response,	injected)	{

				response.json({

								something:	injected.something,	//	2

								other:	injected.other,	//	'just	a	string'

								fn:	injected.fn.name	//	'myFunc'

				});

});

Add multiple injectors

Instead of (or in addition to) defining controllers, Foxx apps can also define exports.

Foxx exports are not intended to replace regular npm modules. They simply allow you to
make your app's collections and applicationContext available in other Foxx apps or
bundling ArangoDB-specific modules in re-usable Foxx apps.

In order to export modules in a Foxx app, you need to list the files in your manifest:

{

				"name":	"foxx_exports_example",

				"version":	"1.0.0",

				"description":	"Demonstrates	Foxx	exports.",

				"exports":	{

								"doodads":	"./doodads.js",

								"anotherModule":	"./someOtherFilename.js"

				},

				"controllers":	{

								"/etc":	"./controllers.js"

				}

}

The file doodads.js in the app's base path could look like this:

var	Foxx	=	require('org/arangodb/foxx');

var	Doodad	=	Foxx.Model.extend({},	{});

var	doodadRepo	=	new	Foxx.Repository(

				applicationContext.collection('doodads'),

				{model:	Doodad}

);

exports.repo	=	doodadRepo;

exports.model	=	Doodad;

This module would then export the name "repo" bound to the variable doodads as well as
the name "model" bound to the Doodad model.

Note: that the applicationContext is available to your Foxx exports just like in your Foxx
controllers.

Working with Foxx exports

Define an export module

Warning

Foxx exports only support CommonJS exports using the special exports variable. Node-
style exports via module.exports are not supported.

In order to import from another app, you need to know where the app is mounted.

Let's say we have mounted the example app above at /my-doodads. We could now
access the app's exports in another app like so:

var	Foxx	=	require('org/arangodb/foxx');

var	doodads	=	Foxx.requireApp('/my-doodads').doodads;

var	Doodad	=	doodads.model;

var	doodadRepo	=	doodads.repo;

//	use	the	imported	model	and	repository

var	myDoodad	=	new	Doodad();

doodadRepo.save(myDoodad);

Warning

When using Foxx exports in other apps, the load order of apps determines when which
app's exports will become available.

In order to use Foxx exports in another app's controllers it is recommended you use
controller.addInjector to delay the import until all mounted apps have been loaded:

var	Foxx	=	require('org/arangodb/foxx');

var	controller	=	new	Foxx.Controller(applicationContext);

controller.addInjector({

				doodads:	function()	{

								return	Foxx.requireApp('/my-doodads').doodads;

				}

});

//	use	the	imported	model	and	repository

controller.post('/doodads',	function(request,	response,	injected)	{

				var	myDoodad	=	new	injected.doodads.model();

				injected.doodads.repo.save(myDoodad);

				response.json(myDoodad.forClient());

});

Import from another app

There is currently no workaround to allow using one app's Foxx exports in another app's
Foxx exports.

If you want to import Foxx exports of an app in controllers of the same app, you can do
so without knowing the mount path in advance by using applicationContext.mount:

var	Foxx	=	require('org/arangodb/foxx');

var	doodads	=	Foxx.requireApp(applicationContext.mount).doodads;

If you don't need direct access to ArangoDB's functionality or the applicationContext, it is
a better idea to use a regular npm module instead.

FormatMiddleware

To use this plugin, please require it first:

		FormatMiddleware	=	require("org/arangodb/foxx/template_middleware").FormatMiddleware;

This Middleware gives you Rails-like format handling via the extension of the URL or the
accept header. Say you request an URL like /people.json:

The FormatMiddleware will set the format of the request to JSON and then delete the
.json from the request. You can therefore write handlers that do not take an extension
into consideration and instead handle the format via a simple string. To determine the
format of the request it checks the URL and then the accept header. If one of them gives
a format or both give the same, the format is set. If the formats are not the same, an error
is raised.

Use it by calling:

FormatMiddleware	=	require('foxx').FormatMiddleware;

app.before(FormatMiddleware.new(['json']));

In both forms you can give a default format as a second parameter, if no format could be
determined. If you give no defaultFormat this case will be handled as an error.

TemplateMiddleware

To use this plugin, please require it first:

TemplateMiddleware	=	require("org/arangodb/foxx/template_middleware").TemplateMiddleware;

The TemplateMiddleware can be used to give a Foxx.Controller the capability of using
templates. Currently you can only use Underscore Templates. It expects documents in

Optional Functionality

the following form in this collection:

{

		path:	"high/way",

		content:	"hello	<%=	username	%>",

		contentType:	"text/plain",

		templateLanguage:	"underscore"

}

The content is the string that will be rendered by the template processor. The
contentType is the type of content that results from this call. And with the
templateLanguage you can choose your template processor. There is only one choice
now: underscore. Which would set the body of the response to hello Controller with the
template defined above. It will also set the contentType to text/plain in this case. In
addition to the attributes you provided, you also have access to all your view helpers.

Initialize

Initialize with the name of a collection or a collection and optionally a set of helper
functions. Then use before to attach the initialized middleware to your Foxx.Controller

Examples

templateMiddleware	=	new	TemplateMiddleware("templates",	{

		uppercase:	function	(x)	{	return	x.toUpperCase();	}

});

//	or	without	helpers:

//templateMiddleware	=	new	TemplateMiddleware("templates");

app.before(templateMiddleware);

Render

	response.render(templatePath,	data)	

When the TemplateMiddleware is included, you will have access to the render function
on the response object. If you call render, Controller will look into the this collection and
search by the path attribute. It will then render the template with the given data.

Examples

response.render("high/way",	{username:	'Application'})

Foxx is an easy way to create APIs and simple web applications from within ArangoDB. It
is inspired by Sinatra, the classy Ruby web framework. An application built with Foxx is
written in JavaScript and deployed to ArangoDB directly. ArangoDB serves this
application, you do not need a separate application server.

In order to share your applications with the community, we have created a central GitHub
repository

https://github.com/arangodb/foxx-apps

where you can register your applications. This repository also contains the hello world
application for Foxx.

Applications are managed using the Foxx manager foxx-manager. It is similar to tools like
brew or aptitude.

Foxx Manager

Foxx Applications

The Foxx manager is a shell program. It should have been installed under /usr/bin or
/usr/local/bin when installing the ArangoDB package. An instance of the ArangoDB server
must be up and running.

unix>	foxx-manager

Expecting	a	command,	please	try:

Example	usage:

foxx-manager	install	<foxx>	<mount-point>

foxx-manager	uninstall	<mount-point>

Further	help:

foxx-manager	help

The most important commands are

install: Fetches a Foxx application from the central foxx-apps repository, mounts it to
a local URL and sets it up
uninstall: Unmounts a mounted Foxx application and calls its teardown method
list: Lists all installed Foxx applications (alias: installed)
config: Get information about the configuration including the path to the app
directory.

When dealing with a fresh install of ArangoDB, there should be no installed applications
besides the system applications that are shipped with ArangoDB.

unix>	foxx-manager	installed

Name								Author															Description																																																AppID															Version				Mount															Active				System	

---------			------------------			--			-----------------			--------			-----------------			-------			-------

aardvark				Michael	Hackstein				Foxx	application	manager	for	the	ArangoDB	web	interface				app:aardvark:1.0				1.0								/_admin/aardvark				yes							yes				

---------			------------------			--			-----------------			--------			-----------------			-------			-------

1	application(s)	found

There is currently one application installed. It is called "aardvark" and it is a system
application. You can safely ignore system applications.

We are now going to install the hello world application. It is called "hello-foxx" - no suprise
there.

First Steps with the Foxx Manager

unix>	foxx-manager	install	hello-foxx	/example

Application	app:hello-foxx:1.2.2	installed	successfully	at	mount	point	/example

The second parameter /example is the mount path of the application. You should now be
able to access the example application under

http://localhost:8529/example

using your favorite browser. It will now also be visible when using the installed command.

unix>	foxx-manager	installed

Name										Author															Description																																																AppID																			Version				Mount															Active				System	

-----------			------------------			--			---------------------			--------			-----------------			-------			-------

hello-foxx				Frank	Celler									A	simple	example	application.																														app:hello-foxx:1.2.2				1.2.2						/example												yes							no					

aardvark						Michael	Hackstein				Foxx	application	manager	for	the	ArangoDB	web	interface				app:aardvark:1.0								1.0								/_admin/aardvark				yes							yes				

-----------			------------------			--			---------------------			--------			-----------------			-------			-------

2	application(s)	found

You can install the application again under different mount path.

unix>	foxx-manager	install	hello-foxx	/hello

Application	app:hello-foxx:1.2.2	installed	successfully	at	mount	point	/hello

You now have two separate instances of the same application. They are completely
independent of each other.

unix>	foxx-manager	installed

Name										Author															Description																																																AppID																			Version				Mount															Active				System	

-----------			------------------			--			---------------------			--------			-----------------			-------			-------

hello-foxx				Frank	Celler									A	simple	example	application.																														app:hello-foxx:1.2.2				1.2.2						/example												yes							no					

aardvark						Michael	Hackstein				Foxx	application	manager	for	the	ArangoDB	web	interface				app:aardvark:1.0								1.0								/_admin/aardvark				yes							yes				

hello-foxx				Frank	Celler									A	simple	example	application.																														app:hello-foxx:1.2.2				1.2.2						/hello														yes							no					

-----------			------------------			--			---------------------			--------			-----------------			-------			-------

3	application(s)	found

The current version of the application is 1.2.2 (check the output of installed for the current
version). It is even possible to mount a different version of an application.

Now let's remove the instance mounted under /hello.

unix>	foxx-manager	uninstall	/hello

Application	app:hello-foxx:1.2.2	unmounted	successfully	from	mount	point	/hello

Note that "uninstall" is a combination of "teardown" and "unmount". This allows the
application to clean up its own data. Internally, this will call the application's teardown
script as defined in the application manifest.

In the previous chapter we have seen how to install and uninstall applications. We now
go into more details.

There are five steps when installing or uninstalling applications.

fetch the application from a source
mount the application at a mount path
setup the application, creating the necessary collections
teardown the application, removing the application-specific collections
unmount the application

When installing an application, the steps "fetch", "mount", and "setup" are executed
automatically. When uninstalling an application, the steps "teardown" and "unmount" are
executed automatically.

We are now going to install the hello world application manually. You can use search to
find application in your local copy of the central repository.

So, first we update our local copy to get the newest versions from the central repository.

unix>	foxx-manager	update

Updated	local	repository	information	with	4	application(s)

You can now search for words with the description of an application.

unix>	foxx-manager	search	hello

Name										Author										Description																														

-----------			-------------			---

hello-foxx				Frank	Celler				This	is	'Hello	World'	for	ArangoDB	Foxx.	

-----------			-------------			---

1	application(s)	found

As soon as you know the name of the application, you can check its details.

Behind the Foxx Manager scenes

Installing an application manually

unix>	foxx-manager	info	hello-foxx

Name:								hello-foxx

Author:						Frank	Celler

System:						false

Description:	This	is	'Hello	World'	for	ArangoDB	Foxx.

Versions:

1.1.0:	fetch	github	"fceller/hello-foxx"	"v1.1.0"

1.1.1:	fetch	github	"fceller/hello-foxx"	"v1.1.1"

1.2.0:	fetch	github	"fceller/hello-foxx"	"v1.2.0"

1.2.1:	fetch	github	"fceller/hello-foxx"	"v1.2.1"

1.2.2:	fetch	github	"fceller/hello-foxx"	"v1.2.2"

If you execute

unix>	foxx-manager	fetch	github	"fceller/hello-foxx"	"v1.2.1"

then the version 1.2.1 of the application will be downloaded. The command fetched lists
all fetched applications.

unix>	foxx-manager	fetched

Name										Author										Description																						AppID																			Version				Path													

-----------			-------------			------------------------------			---------------------			--------			-----------------

hello-foxx																				A	simple	example	application.				app:hello-foxx:1.2.1				1.2.1						hello-foxx-1.2.1	

hello-foxx				Frank	Celler				A	simple	example	application.				app:hello-foxx:1.2.2				1.2.2						hello-foxx-1.2.2	

-----------			-------------			------------------------------			---------------------			--------			-----------------

2	application(s)	found

We have now two versions of the hello world application. The current version fetched
when installing the application using install and the one fetched now.

Let's now mount the application in version 1.2.1 under /hello.

unix>	foxx-manager	mount	app:hello-foxx:1.2.1	/hello

unix>	foxx-manager	installed

Name										Author															Description																																																AppID																			Version				Mount															Active				System	

-----------			------------------			--			---------------------			--------			-----------------			-------			-------

hello-foxx				Frank	Celler									A	simple	example	application.																														app:hello-foxx:1.2.1				1.2.1						/hello														yes							no					

hello-foxx				Frank	Celler									A	simple	example	application.																														app:hello-foxx:1.2.2				1.2.2						/example												yes							no					

aardvark						Michael	Hackstein				Foxx	application	manager	for	the	ArangoDB	web	interface				app:aardvark:1.0								1.0								/_admin/aardvark				yes							yes				

-----------			------------------			--			---------------------			--------			-----------------			-------			-------

3	application(s)	found

The application is mounted but not yet initialized. If you check the available collections,
you will see that there is no collection called hello_texts.

arangosh>	db._collections()

[

		[ArangoCollection	2965927,	"_routing"	(type	document,	status	loaded)],	

		[ArangoCollection	96682407,	"example_texts"	(type	document,	status	loaded)],	

		...

]

A collection example_texts exists. This belongs to the mounted application at /example. If
we set-up the application, then the setup script will create the missing collection.

unix>	foxx-manager	setup	/hello

Now check the list of collections again.

arangosh>	db._collections()

[

		[ArangoCollection	2965927,	"_routing"	(type	document,	status	loaded)],	

		[ArangoCollection	96682407,	"example_texts"	(type	document,	status	unloaded)],	

		[ArangoCollection	172900775,	"hello_texts"	(type	document,	status	loaded)],	

		...

]

You can now use the mounted and initialized application.

unix>	foxx-manager	installed

Name										Author															Description																																																AppID																			Version				Mount															Active				System	

-----------			------------------			--			---------------------			--------			-----------------			-------			-------

hello-foxx				Frank	Celler									A	simple	example	application.																														app:hello-foxx:1.2.2				1.2.2						/example												yes							no					

hello-foxx				Frank	Celler									A	simple	example	application.																														app:hello-foxx:1.2.1				1.2.1						/hello														yes							no					

aardvark						Michael	Hackstein				Foxx	application	manager	for	the	ArangoDB	web	interface				app:aardvark:1.0								1.0								/_admin/aardvark				yes							yes				

-----------			------------------			--			---------------------			--------			-----------------			-------			-------

3	application(s)	found

As you can see, there are two instances of the application under two mount paths in two
different versions. As the collections are not shared between applications, they are
completely independent from each other.

Now let us uninstall the application again. First we have to call the teardown script, which
will remove the collection hello_texts.

unix>	foxx-manager	teardown	/hello

This will drop the collection hello_exists. The application is, however, still reachable. We
still need to unmount it.

unix>	foxx-manager	unmount	/hello

Removing all mounts of an application

The same application might be mounted multiple times under different mount paths. To
get rid of all mounted instances of an application, there is the "purge" command. "purge"
will unmount and tear down all mounted instances of the application, and finally will
remove the application directory, too.

This will remove all data of all instances of the application and also the application
directory, code and configured. Use with care!

There are two options for deploying local changes to an existing application:

the easiest way is to start the server in development mode. This will make all
available foxx applications be available in under the /dev/ URL prefix. All changes to
the application code will become live instantly because all applications are reloaded
on each request to a URL starting with /dev/. Note: that the constant reloading in the
development mode has a performance impact so it shouldn't be used in product.

if the development mode is not an option, you can use the replace command from
foxx-manager. It provides an easy mechanism to re-deploy the code for an already
installed application. It can be used as follows:

unix>	foxx-manager	replace	hello-foxx	/hello

Uninstalling an application manually

Making changes to an existing application

The above will re-deploy the code for the application hello-foxx which has to be
already installed under the /hello mount point. The application's setup function will be
called when invoking replace but not teardown.

So far we have installed Foxx applications from the central Github repository
"arangodb/foxx-apps". It is also possible to install an application from another repository.
This can achieved by using the fetch and mount commands as follows:

unix>	foxx-manager	fetch	github	<username>/<repository>

unix>	foxx-manager	mount	<app-id>	<mount>

Examples

unix>	foxx-manager	fetch	github	arangodb/fugu

unix>	foxx-manager	mount	fugu	/fugu

You may also install Foxx applications which are already located in the filesystem. Again,
you can use the fetch command, but with the directory type. Note that the directory
location must be a directory accessible by the foxx-manager.

Examples

unix>	foxx-manager	fetch	directory	/home/developer/apps/myapp

unix>	foxx-manager	mount	myapp	/myapp

Installing an application from a zip file

It is also possible to install an application contained in a zip file. You can use the fetch
command again, with the zip type. Note that the zip file must be accessible by the foxx-

Installing an application from your own
Github repository

Installing an application from a local
directory

manager.

Let's first fetch a zip file. We'll be downloading the fugu application from Github and store
it in file fugu.zip locally:

unix>	wget	-O	fugu.zip	"https://github.com/arangodb/fugu/archive/master.zip"

Now we can install the application from the zip file:

unix>	foxx-manager	fetch	zip	./fugu.zip

unix>	foxx-manager	mount	fugu	/fugu

Regular Foxx applications are database-specific. When using multiple databases inside
the same ArangoDB instance, there can be different Foxx applications in each database.

Every operation executed via the foxx-manager is run in the context of a single database.
By default (i.e. if not specified otherwise), the foxx-manager will work in the context of the
_system database.

If you want the foxx-manager to work in the context of a different database, use the
command-line argument --server.database when invoking the foxx-manager binary.

Foxx applications consist of a file system part (scripts in the application directory) and a
database part. The current version of ArangoDB cannot replicate changes in the file
system so installing, updating or removing a Foxx application using foxx-manager will not
be included in the replication.

Using Multiple Databases

Foxx Applications and Replication

Use help to see all commands

	unix>	foxx-manager	help	

The following commands are available:

available										lists	all	Foxx	applications	available	in	the	local	repository

config													returns	configuration	information	from	the	server

fetch														fetches	a	Foxx	application	from	the	central	foxx-apps	repository	into	the	local	repository

fetched												lists	all	fetched	Foxx	applications	that	were	fetched	into	the	local	repository

help															shows	this	help

info															displays	information	about	a	Foxx	application

install												fetches	a	Foxx	application	from	the	central	foxx-apps	repository,	mounts	it	to	a	local	URL	and	sets	it	up

installed										alias	for	the	'list'	command

list															lists	all	installed	Foxx	applications

mount														mounts	a	fetched	Foxx	application	to	a	local	URL

purge														uninstalls	a	Foxx	application	with	all	its	mounts	and	physically	removes	the	application	directory

																			WARNING:	this	will	remove	all	data	and	code	of	the	application!

remove													alias	for	the	'purge'	command

replace												replaces	an	existing	Foxx	application	with	the	current	local	version	found	in	the	application	directory

rescan													rescans	the	Foxx	application	directory	on	the	server	side

																			note:	this	is	only	required	if	the	server-side	apps	directory	was	modified	by	other	processes

search													searches	the	local	foxx-apps	repository

setup														executes	the	setup	script	(app	must	already	be	mounted)

teardown											executes	the	teardown	script	(app	must	be	still	be	mounted)

																			WARNING:	this	action	will	remove	application	data	if	the	application	implements	teardown!

uninstall										unmounts	a	mounted	Foxx	application	and	calls	its	teardown	method

unmount												unmounts	a	mounted	Foxx	application	without	calling	its	teardown	method

update													updates	the	local	foxx-apps	repository	with	data	from	the	central	foxx-apps	repository

Foxx Manager Commands

Internally, foxx-manager is a wrapper around arangosh. That means you can use the
options of arangosh. To retrieve a list of the options for arangosh, try

unix>	foxx-manager	--help

To most relevant arangosh options to pass to the foxx-manager will be:

--server.database	<string>																database	name	to	use	when	connecting

--server.disable-authentication	<bool>				disable	the	password	prompt	and	authentication	when	connecting	to	the	server	

--server.endpoint	<string>																endpoint	to	connect	to,	use	'none'	to	start	without	a	server	

--server.password	<string>																password	to	use	when	connecting

--server.username	<string>																username	to	use	when	connecting

These options allow you to use the foxx-manager with a different database or with
another than the default user.

Frequently Used Options

Introduction to User Actions

In some ways the communication layer of the ArangoDB server behaves like a Web
server. Unlike a Web server, it normally responds to HTTP requests by delivering JSON
objects. Remember, documents in the database are just JSON objects. So, most of the
time the HTTP response will contain a JSON document from the database as body. You
can extract the documents stored in the database using HTTP GET. You can store
documents using HTTP POST.

However, there is something more. You can write small snippets - so called actions - to
extend the database. The idea of actions is that sometimes it is better to store parts of
the business logic within ArangoDB.

The simplest example is the age of a person. Assume you store information about people
in your database. It is an anti-pattern to store the age, because it changes every now and
then. Therefore, you normally store the birthday and let the client decide what to do with
it. However, if you have many different clients, it might be easier to enrich the person
document with the age using actions once on the server side.

Or, for instance, if you want to apply some statistics to large data-sets and you cannot
easily express this as query. You can define a action instead of transferring the whole
data to the client and do the computation on the client.

Actions are also useful if you want to restrict and filter data according to some complex
permission system.

The ArangoDB server can deliver all kinds of information, JSON being only one possible
format. You can also generate HTML or images. However, a Web server is normally
better suited for the task as it also implements various caching strategies, language
selection, compression and so on. Having said that, there are still situations where it
might be suitable to use the ArangoDB to deliver HTML pages - static or dynamic. A
simple example is the built-in administration interface. You can access it using any
modern browser and there is no need for a separate Apache or IIS.

In general you will use Foxx to easily extend the database with business logic. Foxx
provides an simple to use interface to actions.

ArangoDB's Actions

The following sections will explain the low-level actions within ArangoDB on which Foxx
is built and show how to define them. The examples start with delivering static HTML
pages - even if this is not the primary use-case for actions. The later sections will then
show you how to code some pieces of your business logic and return JSON objects.

The interface is loosely modeled after the JavaScript classes for HTTP request and
responses found in node.js and the middleware/routing aspects of connect.js and
express.js.

Note that unlike node.js, ArangoDB is multi-threaded and there is no easy way to share
state between queries inside the JavaScript engine. If such state information is required,
you need to use the database itself.

The client API or browser sends a HTTP request to the ArangoDB server and the server
returns a HTTP response to the client. A HTTP request consists of a method, normally
GET or POST when using a browser, and a request path like /hello/world. For a real Web
server there are a zillion of other thing to consider, we will ignore this for the moment.
The HTTP response contains a content type, describing how to interpret the returned
data, and the data itself.

In the following example, we want to define an action in ArangoDB, so that the server
returns the HTML document

<html>

		<body>

			Hello	World

		</body>

</html>

if asked GET /hello/world.

The server needs to know what function to call or what document to deliver if it receives a
request. This is called routing. All the routing information of ArangoDB is stored in a
collection _routing. Each entry in this collections describes how to deal with a particular
request path.

For the above example, add the following document to the _routing collection:

arangosh>	db._routing.save({	

		url:	{	

				match:	"/hello/world"	

		},

		content:	{	

				contentType:	"text/html",	

				body:	"<html><body>Hello	World</body></html>"	

		}

});

In order to activate the new routing, you must either restart the server or call the internal
reload function.

A Hello World Example

arangosh>	require("internal").reloadRouting()

Now use the browser and access http:// localhost:8529/hello/world

You should see the Hello World in our browser.

There are a lot of options for the url attribute. If you define different routing for the same
path, then the following simple rule is applied in order to determine which match wins: If
there are two matches, then the more specific wins. I. e, if there is a wildcard match and
an exact match, the exact match is preferred. If there is a short and a long match, the
longer match wins.

Exact Match

If the definition is

{	

		url:	{	

				match:	"/hello/world"	

		}	

}

then the match must be exact. Only the request for /hello/world will match, everything
else, e. g. /hello/world/my or /hello/world2, will not match.

The following definition is a short-cut for an exact match.

{	

		url:	"/hello/world"	

}

Note: While the two definitions will result in the same URL matching, there is a subtle
difference between them:

The former definition (defining url as an object with a match attribute) will result in the
URL being accessible via all supported HTTP methods (e.g. GET, POST, PUT, DELETE,
...), whereas the latter definition (providing a string url attribute) will result in the URL

Matching a URL

being accessible via HTTP GET and HTTP HEAD only, with all other HTTP methods
being disabled. Calling a URL with an unsupported or disabled HTTP method will result in
an HTTP 501 (not implemented) error.

Prefix Match

If the definition is

{	

		url:	{	

				match:	"/hello/world/*"	

		}	

}

then the match can be a prefix match. The requests for /hello/world, /hello/world/my, and
/hello/world/how/are/you will all match. However /hello/world2 does not match. Prefix
matches within a URL part, i. e. /hello/world*, are not allowed. The wildcard must occur at
the end, i. e.

/hello/*/world	

is also disallowed.

If you define two routes

{	url:	{	match:	"/hello/world/*"	}	}

{	url:	{	match:	"/hello/world/emil"	}	}

then the second route will be used for /hello/world/emil because it is more specific.

Parameterized Match

A parameterized match is similar to a prefix match, but the parameters are also allowed
inside the URL path.

If the definition is

{	

		url:	{	

				match:	"/hello/:name/world"	

		}	

}

then the URL must have three parts, the first part being hello and the third part world. For
example, /hello/emil/world will match, while /hello/emil/meyer/world will not.

Constraint Match

A constraint match is similar to a parameterized match, but the parameters can carry
constraints.

If the definition is

{	

		url:	{	

				match:	"/hello/:name/world",	

				constraint:	{	

						name:	"/[a-z]+/"	

				}	

		}

}

then the URL must have three parts, the first part being hello and the third part world. The
second part must be all lowercase.

It is possible to use more then one constraint for the same URL part.

{	

		url:	{	

				match:	"/hello/:name|:id/world",

constraint:	{	

						name:	"/[a-z]+/",	id:	"/[0-9]+/"	

				}	

		}

}

Optional Match

An optional match is similar to a parameterized match, but the last parameter is optional.

If the definition is

{	

		url:	{	

				match:	"/hello/:name?",	

				constraint:	{	

						name:	"/[a-z]+/"

				}	

		}

}

then the URL /hello and /hello/emil will match.

If the definitions are

{	url:	{	match:	"/hello/world"	}	}

{	url:	{	match:	"/hello/:name",	constraint:	{	name:	"/[a-z]+/"	}	}	}

{	url:	{	match:	"/hello/*"	}	}

then the URL /hello/world will be matched by the first route, because it is the most
specific. The URL /hello/you will be matched by the second route, because it is more
specific than the prefix match.

Method Restriction

You can restrict the match to specific HTTP methods.

If the definition is

{	

		url:	{	

				match:	"/hello/world",	

				methods:	["post",	"put"]	

		}

}

then only HTTP POST and PUT requests will match. Calling with a different HTTP
method will result in an HTTP 501 error.

Please note that if url is defined as a simple string, then only the HTTP methods GET and
HEAD will be allowed, an all other methods will be disabled:

{	

		url:	"/hello/world"	

}

More on Matching

Remember that the more specific match wins.

A match without parameter or wildcard is more specific than a match with
parameters or wildcard.
A match with parameter is more specific than a match with a wildcard.
If there is more than one parameter, specificity is applied from left to right.

Consider the following definitions

(1)	{	url:	{	match:	"/hello/world"	}	}

(2)	{	url:	{	match:	"/hello/:name",	constraint:	{	name:	"/[a-z]+/"	}	}	}

(3)	{	url:	{	match:	"/:something/world"	}	}

(4)	{	url:	{	match:	"/hello/*"	}	}

Then

/hello/world is match by (1)
/hello/emil is match by (2)
/your/world is match by (3)
/hello/you is match by (4)

You can write the following document into the _routing collection to test the above
examples.

{

		routes:	[

{	url:	{	match:	"/hello/world"	},	content:	"route	1"	},

{	url:	{	match:	"/hello/:name|:id",	constraint:	{	name:	"/[a-z]+/",	id:	"/[0-9]+/"	}	},	content:	"route	2"	},

{	url:	{	match:	"/:something/world"	},	content:	"route	3"	},

{	url:	{	match:	"/hello/*"	},	content:	"route	4"	},

]

}

If you change the example slightly, then a JSON object will be delivered.

arangosh>	db._routing.save({	

		url:	"/hello/json",	

		content:	{	

				contentType:	"application/json",	

				body:	"{	\"hello\"	:	\"world\"	}"	

		}

});

arangosh>	require("internal").reloadRouting()

Again check with your browser http:// localhost:8529/hello/json

Depending on your browser and installed add-ons you will either see the JSON object or
a download dialog. If your browser wants to open an external application to display the
JSON object, you can change the contentType to "text/plain" for the example. This
makes it easier to check the example using a browser. Or use curl to access the server.

bash>	curl	"http://127.0.0.1:8529/hello/json"	&&	echo

{	"hello"	:	"world"	}

There are a lot of different ways on how to deliver content. We have already seen the
simplest one, where static content is delivered. The fun, however, starts when delivering
dynamic content.

Static Content

You can specify a body and a content-type.

{	

		content:	{

				contentType:	"text/html",

				body:	"<html><body>Hello	World</body></html>"

		}

}

A Hello World Example for JSON

Delivering Content

If the content type is text/plain then you can use the short-cut

{	

		content:	"Hello	World"	

}

A Simple Action

The simplest dynamic action is:

{	

		action:	{	

				do:	"org/arangodb/actions/echoRequest"	

		}	

}

It is not advisable to store functions directly in the routing table. It is better to call
functions defined in modules. In the above example the function can be accessed from
JavaScript as:

require("org/arangodb/actions").echoRequest

The function echoRequest is pre-defined. It takes the request objects and echos it in the
response.

The signature of such a function must be

function	(req,	res,	options,	next)

Examples

arangosh>	db._routing.save({	

		url:	"/hello/echo",

		action:	{	

				do:	"org/arangodb/actions/echoRequest"	

		}	

});

Reload the routing and check http:// 127.0.0.1:8529/hello/echo

You should see something like

{

		"request":	{

				"path":	"/hello/echo",

				"headers":	{

						"accept-encoding":	"gzip,	deflate",

						"accept-language":	"de-de,de;q=0.8,en-us;q=0.5,en;q=0.3",

						"connection":	"keep-alive",

						"content-length":	"0",

						"host":	"localhost:8529",

						"user-agent":	"Mozilla/5.0	(X11;	Linux	x86_64;	rv:15.0)	Gecko/20100101	Firefox/15.0"

				},

				"requestType":	"GET",

				"parameters":	{	}

		},

		"options":	{	}

}

The request might contain path, prefix, suffix, and urlParameters attributes. path is the
complete path as supplied by the user and always available. If a prefix was matched,
then this prefix is stored in the attribute prefix and the remaining URL parts are stored as
an array in suffix. If one or more parameters were matched, then the parameter values
are stored in urlParameters.

For example, if the url description is

{	

		url:	{	

				match:	"/hello/:name/:action"	

		}	

}

and you request the path /hello/emil/jump, then the request object will contain the
following attribute

urlParameters:	{	

		name:	"emil",	

		action:	"jump"	

}

Action Controller

As an alternative to the simple action, you can use controllers. A controller is a module,
defines the function get, put, post, delete, head, patch. If a request of the corresponding
type is matched, the function will be called.

Examples

arangosh>	db._routing.save({	

		url:	"/hello/echo",

		action:	{	

				controller:	"org/arangodb/actions/echoController"	

		}	

});

Prefix Action Controller

The controller is selected when the definition is read. There is a more flexible, but slower
and maybe insecure variant, the prefix controller.

Assume that the url is a prefix match

{	

		url:	{	

				match:	/hello/*"	

		}	

}

You can use

{	

		action:	{	

				prefixController:	"org/arangodb/actions"	

		}	

}

to define a prefix controller. If the URL /hello/echoController is given, then the module
org/arangodb/actions/echoController is used.

If you use a prefix controller, you should make certain that no unwanted actions are
available under the prefix.

The definition

{	

		action:	"org/arangodb/actions"	

}

is a short-cut for a prefix controller definition.

Function Action

You can also store a function directly in the routing table.

Examples

arangosh>	db._routing.save({	

		url:	"/hello/echo",

		action:	{	

				callback:	"function(req,res)	{res.statusCode=200;	res.body='Hello'}"	

		}	

});

Requests and Responses

The controller must define handler functions which take a request object and fill the
response object.

A very simple example is the function echoRequest defined in the module
org/arangodb/actions.

function	(req,	res,	options,	next)	{

		var	result;

		result	=	{	request:	req,	options:	options	};

		res.responseCode	=	exports.HTTP_OK;

		res.contentType	=	"application/json";

		res.body	=	JSON.stringify(result);

}

Install it via:

arangosh>	db._routing.save({	

		url:	"/echo",

		action:	{	

				do:	"org/arangodb/actions/echoRequest"	

		}	

});

Reload the routing and check http:// 127.0.0.1:8529/hello/echo

You should see something like

{

		"request":	{

				"prefix":	"/hello/echo",

				"suffix":	[

						"hello",

						"echo"

],

				"path":	"/hello/echo",

				"headers":	{

						"accept-encoding":	"gzip,	deflate",

						"accept-language":	"de-de,de;q=0.8,en-us;q=0.5,en;q=0.3",

						"connection":	"keep-alive",

						"content-length":	"0",

						"host":	"localhost:8529",

						"user-agent":	"Mozilla/5.0	(X11;	Linux	x86_64;	rv:15.0)	Gecko/20100101	Firefox/15.0"

				},

				"requestType":	"GET",

				"parameters":	{	}

		},

		"options":	{	}

}

You may also pass options to the called function:

arangosh>	db._routing.save({	

		url:	"/echo",

		action:	{

				do:	"org/arangodb/actions/echoRequest",

				options:	{	

						"Hello":	"World"	

				}	

		}	

});

You should now see the options in the result.

{

		"request":	{

				...

		},

		"options":	{

				"Hello":	"World"

		}

}

`

As we've seen in the previous examples, actions get called with the request and
response objects (named req and res in the examples) passed as parameters to their
handler functions.

The req object contains the incoming HTTP request, which might or might not have been
modified by a previous action (if actions were chained).

A handler can modify the request object in place if desired. This might be useful when
writing middleware (see below) that is used to intercept incoming requests, modify them
and pass them to the actual handlers.

While modifying the request object might not be that relevant for non-middleware actions,
modifying the response object definitely is. Modifying the response object is an action's
only way to return data to the caller of the action.

We've already seen how to set the HTTP status code, the content type, and the result
body. The res object has the following properties for these:

contentType: MIME type of the body as defined in the HTTP standard (e.g. text/html,
text/plain, application/json, ...)
responsecode: the HTTP status code of the response as defined in the HTTP
standard. Common values for actions that succeed are 200 or 201. Please refer to
the HTTP standard for more information.
body: the actual response data

To set or modify arbitrary headers of the response object, the headers property can be
used. For example, to add a user-defined header to the response, the following code will
do:

res.headers	=	res.headers	||	{	};	//	headers	might	or	might	not	be	present

res.headers['X-Test']	=	'someValue';	//	set	header	X-Test	to	"someValue"

This will set the additional HTTP header X-Test to value someValue. Other headers can
be set as well. Note that ArangoDB might change the case of the header names to lower
case when assembling the overall response that is sent to the caller.

It is not necessary to explicitly set a Content-Length header for the response as

Modifying Request and Response

ArangoDB will calculate the content length automatically and add this header itself.
ArangoDB might also add a Connection header itself to handle HTTP keep-alive.

ArangoDB also supports automatic transformation of the body data to another format.
Currently, the only supported transformations are base64-encoding and base64-
decoding. Using the transformations, an action can create a base64 encoded body and
still let ArangoDB send the non-encoded version, for example:

res.body	=	'VGhpcyBpcyBhIHRlc3Q=';

res.transformations	=	res.transformations	||	[];	//	initialise

res.transformations.push('base64decode');	//	will	base64	decode	the	response	body

When ArangoDB processes the response, it will base64-decode what's in res.body and
set the HTTP header Content-Encoding: binary. The opposite can be achieved with the
base64encode transformation: ArangoDB will then automatically base64-encode the
body and set a Content-Encoding: base64 HTTP header.

To write your own dynamic action handlers, you must put them into modules.

Modules are a means of organizing action handlers and making them loadable under
specific names.

To start, we'll define a simple action handler in a module /own/test:

arangosh>	db._modules.save({	

		path:	"/own/test",

		content:	"exports.do	=	function(req,	res,	options,	next)	{	res.body	=	'test';	res.responseCode	=	200;	res.contentType	=	'text/html';	};"

});

This does nothing but register a do action handler in a module /own/test. The action
handler is not yet callable, but must be mapped to a route first. To map the action to the
route /ourtest, execute the following command:

arangosh>	db._routing.save({	

		url:	"/ourtest",

		action:	{	

				controller:	"/own/test"	

Writing dynamic action handlers

		}	

});

In order to see the module in action, you must either restart the server or call the internal
reload function.

arangosh>	require("internal").reloadRouting()

Now use the browser and access http:// localhost:8529/ourtest

You will see that the module's do function has been executed.

Sometimes it might seem that your change do not take effect. In this case the culprit
could be one of the caches. With dynamic actions there are two caches involved:

The Routing Cache

The routing cache stores the routing information computed from the _routing collection.
Whenever you change this collection manually, you need to call

arangosh>	require("internal").reloadRouting();

in order to rebuild the cache.

The Modules Cache

If you use a dynamic action and this action is stored in module, then the module functions
are also stored in a cache in order to avoid parsing the JavaScript code again and again.

Whenever you change the modules collections manually, you need to call

arangosh>	require("internal").flushServerModules();

in order to rebuild the cache.

A Word about Caching

Flush Order

If you define a dynamic routing and the controller, then you need to flush the caches in a
particular order. In order to build the routes, the module information must be known.
Therefore, you need to flush the modules caches first.

arangosh>	require("internal").flushServerModules();

arangosh>	require("internal").reloadRouting();

For detailed information see the reference manual.

Redirects

Use the following for a permanent redirect:

arangosh>	db._routing.save({	

		url:	"/",

		action:	{

				do:	"org/arangodb/actions/redirectRequest",	

				options:	{	

						permanently:	true,

						destination:	"http://somewhere.else/"	

				}	

		}	

});

Routing Bundles

Instead of adding all routes for package separately, you can specify a bundle.

{

		routes:	[

				{	url:	"/url1",	content:	"..."	},

				{	url:	"/url2",	content:	"..."	},

				{	url:	"/url3",	content:	"..."	},

				...	

]

}

The advantage is, that you can put all your routes into one document and use a common

Advanced Usages

prefix.

{

		urlPrefix:	"/test",

		routes:	[

				{	url:	"/url1",	content:	"..."	},

				{	url:	"/url2",	content:	"..."	},

				{	url:	"/url3",	content:	"..."	},

				...	

]

}

will define the URL /test/url1, /test/url2, and /test/url3.

Writing Middleware

Assume, you want to log every request. In this case you can easily define an action for
the whole url-space /. This action simply logs the requests, calls the next in line, and logs
the response.

exports.logRequest	=	function	(req,	res,	options,	next)	{

		console.log("received	request:	%s",	JSON.stringify(req));

		next();

		console.log("produced	response:	%s",	JSON.stringify(res));

};

This function is available as org/arangodb/actions/logRequest. You need to tell
ArangoDB that it is should use a prefix match and that the shortest match should win in
this case:

				arangosh>	db._routing.save({	

						middleware:	[

								{	

										url:	{	

												match:	"/*"	

										},	

										action:	{	

												do:	"org/arangodb/actions/logRequest"	

										}	

								}

]

				});

If you call next(), the next specific routing will be used for the original URL. Even if you
modify the URL in the request object req, this will not cause the next() to jump to the

routing defined for this next URL. If proceeds occurring the origin URL. However, if you
use next(true), the routing will stop and request handling is started with the new URL.
You must ensure that next(true) is never called without modifying the URL in the request
object req. Otherwise an endless loop will occur.

Using single routes or bundles can be become a bit messy in large applications. Kaerus
has written a deployment tool in node.js.

Note that there is also Foxx for building applications with ArangoDB.

Caching

If you made any changes to the routing but the changes do not have any effect when
calling the modified action's URL, you might have been hit by some caching issues.

After any modification to the routing or actions, it is thus recommended to make the
changes "live" by calling the following functions from within arangosh:

arangosh>	require("internal").flushServerModules();

arangosh>	require("internal").reloadRouting();

You might also be affected by client-side caching. Browsers tend to cache content and
also redirection URLs. You might need to clear or disable the browser cache in some
cases to see your changes in effect.

Data types

When processing the request data in an action, please be aware that the data type of all
URL parameters is string. This is because the whole URL is a string and when the
individual parts are extracted, they will also be strings.

For example, when calling the URL http:// localhost:8529/hello/world?value=5

the parameter value will have a value of (string) 5, not (number) 5. This might be
troublesome if you use JavaScript's === operator when checking request parameter

Application Deployment

Common Pitfalls when using Actions

https://github.com/kaerus/arangodep

values.

The same problem occurs with incoming HTTP headers. When sending the following
header from a client to ArangoDB

X-My-Value:	5

then the header X-My-Value will have a value of (string) 5 and not (number) 5.

501 Not Implemented

If you defined a URL in the routing and the URL is accessible fine via HTTP GET but
returns an HTTP 501 (not implemented) for other HTTP methods such as POST, PUT or
DELETE, then you might have been hit by some defaults.

By default, URLs defined like this (simple string url attribute) are accessible via HTTP
GET and HEAD only. To make such URLs accessible via other HTTP methods, extend
the URL definition with the methods attribute.

For example, this definition only allows access via GET and HEAD:

{	

		url:	"/hello/world"	

}

whereas this definition allows HTTP GET, POST, and PUT:

{	

		url:	{	

				match:	"/hello/world",	

				methods:	["get",	"post",	"put"]	

		}

}

The former definition (defining url as an object with a match attribute) will result in the
URL being accessible via all supported HTTP methods (e.g. GET, POST, PUT, DELETE,
...), whereas the latter definition (providing a string url attribute) will result in the URL
being accessible via HTTP GET and HTTP HEAD only, with all other HTTP methods
being disabled. Calling a URL with an unsupported or disabled HTTP method will result in
an HTTP 501 error.

How the replication works

Starting with ArangoDB 1.4, ArangoDB comes with optional asynchronous master-slave
replication. Replication is configured on a per-database level, meaning that different
databases in the same ArangoDB instance can have different replication settings.
Replication must be turned on explicitly before it becomes active for a database.

In a typical master-slave replication setup, clients direct all their write operations for a
specific database to the master. The master database is the only place to connect to
when making any insertions/updates/deletions.

The master database will log all write operations in its write-ahead log. Any number of
slaves can then connect to the master database and fetch data from the master
database's write-ahead log. The slaves then can apply all the events from the log in the
same order locally. After that, they will have the same state of data as the master
database.

Transactions are honored in replication, i.e. transactional write operations will become
visible on slaves atomically.

As all write operations will be logged to a master database's write-ahead log, the
replication in ArangoDB currently cannot be used for write-scaling. The main purposes of
the replication in current ArangoDB are to provide read-scalability and "hot backups" of
specific databases.

It is possible to connect multiple slave databases to the same master database. Slave
databases should be used as read-only instances, and no user-initiated write operations
should be carried out on them. Otherwise data conflicts may occur that cannot be solved
automatically, and that will make the replication stop. Master-master (or multi-master)
replication is not currently supported in ArangoDB.

The replication in ArangoDB is asynchronous, meaning that slaves will pull changes from
the master database. Slaves need to know to which master database they should
connect to, but a master database is not aware of the slaves that replicate from it. When
the network connection between the master database and a slave goes down, write
operations on the master can continue normally. When the network is up again, slaves
can reconnect to the master database and transfer the remaining changes. This will

Introduction to Replication

happen automatically provided slaves are configured appropriately.

Replication lag

In this setup, write operations are applied first in the master database, and applied in the
slave database(s) afterwards.

For example, let's assume a write operation is executed in the master database at point
in time t0. To make a slave database apply the same operation, it must first fetch the
write operation's data from master database's write-ahead log, then parse it and apply it
locally. This will happen at some point in time after t0, let's say t1.

The difference between t1 and t0 is called the replication lag, and it is unavoidable in
asynchronous replication. The amount of replication lag depends on many factors, a few
of which are:

the network capacity between the slaves and the master
the load of the master and the slaves
the frequency in which slaves poll the master for updates

Between t0 and t1, the state of data on the master is newer than the state of data on the
slave(s). At point in time t1, the state of data on the master and slave(s) is consistent
again (provided no new data modifications happened on the master in between). Thus,
the replication will lead to an eventually consistent state of data.

Replication configuration

The replication is turned off by default. In order to create a master-slave setup, the so-
called replication applier needs to be enabled on both on a slave databases. Since
ArangoDB 2.2, the master database does not need any special configuration, as it will
automatically log all data modification operations into its write-ahead log. The write-ahead
log is then used in replication. Previous versions of ArangoDB required the so-called
replication logger to be activated on the master, too. The replication logger does not have
any purpose in ArangoDB 2.2 and higher, and the object is kept for compatibility with
previous versions only.

Replication is configured on a per-database level. If multiple database are to be
replicated, the replication must be set up individually per database.

The replication applier on the slave can be used to perform a one-time synchronisation
with the master (and then stop), or to perform an ongoing replication of changes. To
resume replication on slave restart, the autoStart attribute of the replication applier must

be set to true.

The replication architecture in ArangoDB before version 2.2 consisted of two main
components, which could be used together or in isolation: the replication logger and the
replication applier. Since ArangoDB 2.2, the replication logger has no special purpose
anymore and is available for downwards-compatibility only.

The replication applier can be administered via the command line or a REST API (see
HTTP Interface for Replication).

As replication is configured on a per-database level and there can be multiple databases
inside one ArangoDB instance, there can be multiple replication appliers in one
ArangoDB instance.

Replication Logger

Purpose

The purpose of the replication logger in ArangoDB before version 2.2 was to log all
changes that modify the state of data in a specific database on a master server. This
included document insertions, updates, and deletions as well as creating, dropping,
renaming and changing collections and indexes.

When the replication logger was used, it logged all these write operations for the
database in its own event log, which was a system collection named _replication.

Reading the events sequentially from the _replication collection provided a list of all write
operations carried out in the master database. Replication clients could then request
these events from the logger and apply them on their own.

Starting with ArangoDB 2.2, the _replication system collection is not used anymore.
Instead, the server will write all data-modification operations into its write-ahead log. The
write-ahead log can be queried by clients, so the need for an extra event log is gone.

Starting and Stopping

Starting with version 2.2, ArangoDB will log all data-modification operations in its write-
ahead log automatically. There is no need to explicitly start or configure the replication
logger on the master.

Components

The replication logger object is still present in ArangoDB 2.2 with the same methods as in
previous versions of ArangoDB, but only for compatibility reasons. For example, the
replication logger has start and stop methods, which are no-ops in ArangoDB 2.2.

One functionality of the replication logger object remains useful in ArangoDB 2.2, and
that is to query the current state. The state can be queried using the state command:

require("org/arangodb/replication").logger.state();

The result might look like this:

{	

		"state"	:	{	

				"running"	:	true,	

						"lastLogTick"	:	"133322013",	

						"totalEvents"	:	16,	

						"time"	:	"2014-07-06T12:58:11Z"	

		},	

		"server"	:	{	

				"version"	:	"2.2.0-devel",	

				"serverId"	:	"40897075811372"	

		},	

		"clients"	:	{	

		}	

}

In previous versions of ArangoDB, the running attribute indicated whether the logger was
currently enabled and logged any events. In ArangoDB 2.2 and higher, this attribute will
always have a value of true.

The totalEvents attribute indicates how many log events have been logged since the start
of the ArangoDB server. Finally, the lastLogTick value indicates the id of the last
operation that was written to the server's write-ahead log. It can be used to determine
whether new operations were logged, and is also used by the replication applier for
incremental fetching of data.

Note: Replication logger state can also be queried via the HTTP API.

Configuration

Since ArangoDB 2.2, no special configuration is necessary for the replication logger. All
operations are written to a server's write-ahead log, and the write-ahead log is used in
replication, too.

Replication Applier

Purpose

The purpose of the replication applier is to read data from a master database's event log,
and apply them locally. The applier will check the master database for new operations
periodically. It will perform an incremental synchronization, i.e. only asking the master for
operations that occurred after the last synchronization.

The replication applier does not get notified by the master database when there are
"new" operations available, but instead uses the pull principle. It might thus take some
time (the so-called replication lag) before an operation from the master database gets
shipped to and applied in a slave database.

The replication applier of a database is run in a separate thread. It may encounter
problems when an operation from the master cannot be applied safely, or when the
connection to the master database goes down (network outage, master database is down
or unavailable etc.). In this case, the database's replication applier thread might terminate
itself. It is then up to the administrator to fix the problem and restart the database's
replication applier.

If the replication applier cannot connect to the master database, or the communication
fails at some point during the synchronization, the replication applier will try to reconnect
to the master database. It will give up reconnecting only after a configurable amount of
connection attempts.

The replication applier state is queryable at any time by using the state command of the
applier. This will return the state of the applier of the current database:

require("org/arangodb/replication").applier.state();

The result might look like this:

{	

		"state"	:	{	

				"running"	:	true,	

				"lastAppliedContinuousTick"	:	"152786205",	

				"lastProcessedContinuousTick"	:	"152786205",	

				"lastAvailableContinuousTick"	:	"152786205",	

				"progress"	:	{	

						"time"	:	"2014-07-06T13:04:57Z",	

						"message"	:	"fetching	master	log	from	offset	152786205",	

						"failedConnects"	:	0	

				},	

				"totalRequests"	:	38,	

				"totalFailedConnects"	:	0,	

				"totalEvents"	:	1,	

				"lastError"	:	{	

						"errorNum"	:	0	

				},	

				"time"	:	"2014-07-06T13:04:57Z"	

		},	

		"server"	:	{	

				"version"	:	"2.2.0-devel",	

				"serverId"	:	"210189384542896"	

		},	

		"endpoint"	:	"tcp://master.example.org:8529",	

		"database"	:	"_system"	

}

The running attribute indicates whether the replication applier of the current database is
currently running and polling the server at endpoint for new events.

The progress.failedConnects attribute shows how many failed connection attempts the
replication applier currently has encountered in a row. In contrast, the
totalFailedConnects attribute indicates how many failed connection attempts the applier
has made in total. The totalRequests attribute shows how many requests the applier has
sent to the master database in total. The totalEvents attribute shows how many log
events the applier has read from the master.

The progress.message sub-attribute provides a brief hint of what the applier currently
does (if it is running). The lastError attribute also has an optional errorMessage sub-
attribute, showing the latest error message. The errorNum sub-attribute of the lastError
attribute can be used by clients to programmatically check for errors. It should be 0 if
there is no error, and it should be non-zero if the applier terminated itself due to a
problem.

Here is an example of the state after the replication applier terminated itself due to
(repeated) connection problems:

{	

		"state"	:	{	

				"running"	:	false,	

				"progress"	:	{	

						"time"	:	"2014-07-06T13:14:37Z",	

						"message"	:	"applier	stopped",	

						"failedConnects"	:	6	

				},	

				"totalRequests"	:	79,	

				"totalFailedConnects"	:	11,	

				"totalEvents"	:	0,	

				"lastError"	:	{	

						"time"	:	"2014-07-06T13:09:41Z",	

						"errorMessage"	:	"could	not	connect	to	master	at	tcp://master.example.org:8529:	Could	not	connect	to	'tcp:/..."

						"errorNum"	:	1400	

				},

				...

		}

}

Note: the state of a database's replication applier is queryable via the HTTP API, too.
Please refer to HTTP Interface for Replication for more details.

Starting and Stopping

To start and stop the applier in the current database, the start and stop commands can
be used:

require("org/arangodb/replication").applier.start(<tick>);

require("org/arangodb/replication").applier.stop();

Note: Starting a replication applier without setting up an initial configuration will fail. The
replication applier will look for its configuration in a file named REPLICATION-APPLIER-
CONFIG in the current database's directory. If the file is not present, ArangoDB will use
some default configuration, but it cannot guess the endpoint (the address of the master
database) the applier should connect to. Thus starting the applier without configuration
will fail.

Note that at the first time you start the applier, you should pass the value returned in the
lastLogTick attribute of the initial sync operation.

Note: Starting a database's replication applier via the start command will not necessarily
start the applier on the next and following ArangoDB server restarts. Additionally,
stopping a database's replication applier manually will not necessarily prevent the applier
from being started again on the next server start. All of this is configurable separately
(hang on reading).

Note: when stopping and restarting the replication applier of database, it will resume
where it last stopped. This is sensible because replication log events should be applied
incrementally. If the replication applier of a database has never been started before, it
needs some tick value from the master's log from which to start fetching events.

There is one caveat to consider when stopping a replication on the slave: if there are still
ongoing replicated transactions that are neither commited or aborted, stopping the
replication applier will cause these operations to be lost for the slave. If these
transactions commit on the master later and the replication is resumed, the slave will not
be able to commit these transactions, too. Thus stopping the replication applier on the
slave manually should only be done if there is certainty that there are no ongoing
transactions on the master.

Configuration

To configure the replication applier of a specific database, use the properties command.
Using it without any arguments will return the current configuration:

require("org/arangodb/replication").applier.properties();

The result might look like this:

{	

		"requestTimeout"	:	300,	

		"connectTimeout"	:	10,	

		"ignoreErrors"	:	0,	

		"maxConnectRetries"	:	10,	

		"chunkSize"	:	0,	

		"autoStart"	:	false,	

		"adaptivePolling"	:	true	

}

Note: There is no endpoint attribute configured yet. The endpoint attribute is required for
the replication applier to be startable. You may also want to configure a username and
password for the connection via the username and password attributes.

require("org/arangodb/replication").applier.properties({	

		endpoint:	"tcp://master.domain.org:8529",	

		username:		"root",	

		password:	"secret"

});

This will re-configure the replication applier for the current database. The configuration
will be used from the next start of the replication applier. The replication applier cannot be
re-configured while it is running. It must be stopped first to be re-configured.

To make the replication applier of the current database start automatically when the
ArangoDB server starts, use the autoStart attribute.

Setting the adaptivePolling attribute to true will make the replication applier poll the
master database for changes with a variable frequency. The replication applier will then
lower the frequency when the master is idle, and increase it when the master can provide
new events). Otherwise the replication applier will poll the master database for changes
with a constant frequency.

To set a timeout for connection and following request attempts, use the connectTimeout
and requestTimeout values. The maxConnectRetries attribute configures after how many
failed connection attempts in a row the replication applier will give up and turn itself off.
You may want to set this to a high value so that temporary network outages do not lead
to the replication applier stopping itself.

The chunkSize attribute can be used to control the approximate maximum size of a
master's response (in bytes). Setting it to a low value may make the master respond
faster (less data is assembled before the master sends the response), but may require
more request-response roundtrips. Set it to 0 to use ArangoDB's built-in default value.

The following example will set most of the discussed properties for the current database's
applier:

require("org/arangodb/replication").applier.properties({	

		endpoint:	"tcp://master.domain.org:8529",	

		username:		"root",	

		password:	"secret",

		adaptivePolling:	true,

		connectTimeout:	15,

		maxConnectRetries:	100,

		chunkSize:	262144,

		autoStart:	true	

});

After the applier is now fully configured, it could theoretically be started. However, we
may first need an initial synchronization of all collections and their data from the master
before we start the replication applier.

The only safe method for doing a full synchronization (or re-synchronization) is thus to

stop the replication applier on the slave (if currently running)
perform an initial full sync with the master database
note the master database's lastLogTick value and

start the continuous replication applier on the slave using this tick value.

The initial synchronization for the current database is executed with the sync command:

require("org/arangodb/replication").sync({

		endpoint:	"tcp://master.domain.org:8529",

		username:	"root",

		password:	"secret

});

Warning: sync will do a full synchronization of the collections in the current database with
collections present in the master database. Any local instances of the collections and all
their data are removed! Only execute this command when you are sure you want to
remove the local data!

As sync does a full synchronization, it might take a while to execute. When sync
completes successfully, it show a list of collections it has synchronized in its collections
attribute. It will also return the master database's last log tick value at the time the sync
was started on the master. The tick value is contained in the lastLogTick attribute of the
sync command:

{	

		"lastLogTick"	:	"231848833079705",	

		"collections"	:	[...]

}

Now you can start the continuous synchronization for the current database on the slave
with the command

require("org/arangodb/replication").applier.start("231848833079705");

Note: The tick values should be handled as strings. Using numeric data types for tick
values is unsafe because they might exceed the 32 bit value and the IEEE754 double
accuracy ranges.

Setting up a working master-slave replication requires two ArangoDB instances:

master: this is the instance that all data-modification operations should be directed to
slave: on this instance, we'll start a replication applier, and this will fetch data from
the master database's write-ahead log and apply its operations locally

For the following example setup, we'll use the instance tcp://master.domain.org:8529 as
the master, and the instance tcp://slave.domain.org:8530 as a slave.

The goal is to have all data from the database _system on master
tcp://master.domain.org:8529 be replicated to the database _system on the slave
tcp://slave.domain.org:8530.

On the master, nothing special needs to be done, as all write operations will automatically
be logged in the master's write-ahead log.

To start replication, make sure there currently is no replication applier running in the
slave's _system database:

db._useDatabase("_system");

require("org/arangodb/replication").applier.stop();

The stop operation will terminate any replication activity in the _system database on the
slave.

After that, do an initial sync of the slave with data from the master. Execute the following
commands on the slave:

db._useDatabase("_system");

require("org/arangodb/replication").sync({

		endpoint:	"tcp://master.example.org:8529",

		username:	"myuser",

		password:	"mypasswd"

});

Username and password only need to be specified when the master server requires
authentication.

Example Setup

Warning: The sync command will replace data in the slave database with data from the
master database! Only execute the commands if you have verified you are on the correct
server, in the correct database!

The sync operation will return an attribute named lastLogTick which we'll need to note.
The last log tick will be used as the starting point for any subsequent replication activity.
Let's assume we got the following last log tick:

{	

		"lastLogTick"	:	"40694126",	

		...

}

Now, we could start the replication applier in the slave database using the last log tick.
However, there is one thing to consider: replication on the slave will be running until the
slave gets shut down. When the slave server gets restarted, replication will be turned off
again. To change this, we first need to configure the slave's replication applier and set its
autoStart attribute:

db._useDatabase("_system");

require("org/arangodb/replication").applier.properties({

		endpoint:	"tcp://master.example.org:8529",

		username:	"myuser",

		password:	"mypasswd",

		autoStart:	true,

		adaptivePolling:	true

});

Now it's time to start the replication applier on the slave using the last log tick we got
before:

db._useDatabase("_system");

require("org/arangodb/replication").applier.start("40694126");

This will replicate all operations happening in the master's system database and apply
them on the slave, too.

After that, you should be able to monitor the state and progress of the replication applier
by executing the state command on the slave server:

				db._useDatabase("_system");

				require("org/arangodb/replication").applier.state();

Please note that stopping the replication applier on the slave using the stop command
should be avoided. The reason is that currently ongoing transactions (that have partly
been replicated to the slave) will be lost after a restart. Stopping and restarting the
replication applier on the slave should thus only be performed if there is certainty that the
master is currently fully idle and all transactions have been replicated fully.

Note that while a slave has only partly executed a transaction from the master, it might
keep a lock on the collections involved in the transaction.

You may also want to check the master and slave states via the HTTP APIs (see HTTP
Interface for Replication).

The replication in ArangoDB has a few limitations. Some of these limitations may be
removed in later versions of ArangoDB:

there is no feedback from the slaves to the master. If a slave cannot apply an event it
got from the master, the master will have a different state of data. In this case, the
replication applier on the slave will stop and report an error. Administrators can then
either "fix" the problem or re-sync the data from the master to the slave and start the
applier again.
the replication is an asynchronous master-slave replication. There is currently no
way to use it as a synchronous replication, or a multi-master replication.
at the moment it is assumed that only the replication applier executes write
operations on a slave. ArangoDB currently does not prevent users from carrying out
their own write operations on slaves, though this might lead to undefined behavior
and the replication applier stopping.
the replication logger will log write operations for all user-defined collections and only
some system collections. Write operations for the following system collections are
excluded intentionally: _trx, _replication, _users, _aal, _configuration,
_cluster_kickstart_plans, _fishbowl, _modules, _routing and all statistics collections.
Write operations for the following system collections will be logged: _aqlfunctions,
_graphs.
Foxx applications consist of database entries and application scripts in the file
system. The file system parts of Foxx applications are not tracked anywhere and
thus not replicated in current versions of ArangoDB. To replicate a Foxx application,
it is required to copy the application to the remote server and install it there using the
foxx-manager utility.
master servers do not know which slaves are or will be connected to them. All
servers in a replication setup are currently only loosely coupled. There currently is no
way for a client to query which servers are present in a replication.
failover must currently be handled by clients or client APIs.
there currently is one replication applier per ArangoDB database. It is thus not
possible to have a slave apply operations from multiple masters into the same target
database.
replication is set up on a per-database level. When using ArangoDB with multiple
databases, replication must be configured individually for each database.
the replication applier is single-threaded, but write operations on the master may be
executed in parallel if they affect different collections. Thus the replication applier

Replication Limitations

might not be able to catch up with a very powerful and loaded master.
replication is only supported between the two ArangoDB servers running the same
ArangoDB version. It is currently not possible to replicate between different
ArangoDB versions.
a replication applier cannot apply data from itself.

In ArangoDB before version 2.2, there was a so-called replication logger which needed to
be activated on the master in order to allow replicating from it. If the logger was not
activated, slaves could not replicate from the master. Running the replication logger
caused extra write operations on the master, which made all data modification operations
more expensive. Each data modification operation was first executed normally, and then
was additionally written to the master's replication log. Turning on the replication logger
may have reduce throughput on an ArangoDB master by some extent. If the replication
feature was not required, the replication logger should have been turned off to avoid this
reduction.

Since ArangoDB 2.2, a master will automatically write all data modification operations
into its write-ahead log, which can also be used for replication. No separate replication
log is written on the master anymore. This reduces the overhead of replication on the
master when compared to previous versions of ArangoDB. In fact, a master server that is
used in a replication setup will have the same throughput than a standalone server that is
not used in replication.

Slaves that connect to an ArangoDB master will cause some work on the master as the
master needs to process the incoming HTTP requests, return the requested data from its
write-ahead and send the response.

In ArangoDB versions prior to 2.2, transactions were logged on the master as an
uninterrupted sequence, restricting their maxmial size considerably. While a transaction
was written to the master's replication log, any other replication logging activity was
blocked.

This is not the case since ArangoDB 2.2. Transactions are now written to the write-ahead
log as the operations of the transactions occur. They may be interleaved with other
operations.

Replication Overhead

Sharding allows to use multiple machines to run a cluster of ArangoDB instances that
together constitute a single database. This enables you to store much more data, since
ArangoDB distributes the data automatically to the different servers. In many situations
one can also reap a benefit in data throughput, again because the load can be distributed
to multiple machines.

In a cluster there are essentially two types of processes: "DBservers" and "coordinators".
The former actually store the data, the latter expose the database to the outside world.
The clients talk to the coordinators exactly as they would talk to a single ArangoDB
instance via the REST interface. The coordinators know about the configuration of the
cluster and automatically forward the incoming requests to the right DBservers.

As a central highly available service to hold the cluster configuration and to synchronize
reconfiguration and fail-over operations we currently use a an external program called
etcd (see github page). It provides a hierarchical key value store with strong consistency
and reliability promises. This is called the "agency" and its processes are called "agents".

All this is admittedly a relatively complicated setup and involves a lot of steps for the
startup and shutdown of clusters. Therefore we have created convenience functionality to
plan, setup, start and shutdown clusters.

The whole process works in two phases, first the "planning" phase and then the "running"
phase. In the planning phase it is decided which processes with which roles run on which
machine, which ports they use, where the central agency resides and what ports its
agents use. The result of the planning phase is a "cluster plan", which is just a relatively
big data structure in JSON format. You can then use this cluster plan to startup,
shutdown, check and cleanup your cluster.

This latter phase uses so-called "dispatchers". A dispatcher is yet another ArangoDB
instance and you have to install exactly one such instance on every machine that will
take part in your cluster. No special configuration whatsoever is needed and you can
organize authentication exactly as you would in a normal ArangoDB instance. You only
have to activate the dispatcher functionality in the configuration file (see options
cluster.disable-dispatcher-kickstarter and cluster.disable-dispatcher-interface, which are
both initially set to true in the standard setup we ship).

However, you can use any of these dispatchers to plan and start your cluster. In the

Sharding

https://github.com/coreos/etcd

planning phase, you have to tell the planner about all dispatchers in your cluster and it
will automatically distribute your agency, DBserver and coordinator processes amongst
the dispatchers. The result is the cluster plan which you feed into the kickstarter. The
kickstarter is a program that actually uses the dispatchers to manipulate the processes in
your cluster. It runs on one of the dispatchers, which analyses the cluster plan and
executes those actions, for which it is personally responsible, and forwards all other
actions to the corresponding dispatchers. This is possible, because the cluster plan
incorporates the information about all dispatchers.

We also offer a graphical user interface to the cluster planner and dispatcher.

In this text we assume that you are working with a standard installation of ArangoDB with
at least a version number of 2.0. This means that everything is compiled for cluster
operation, that etcd is compiled and the executable is installed in the location mentioned
in the configuration file. The first step is to switch on the dispatcher functionality in your
configuration of arangod. In order to do this, change the cluster.disable-dispatcher-
kickstarter and cluster.disable-dispatcher-interface options in arangod.conf both to false.

Note: Once you switch cluster.disable-dispatcher-interface to false, the usual web front
end is automatically replaced with the web front end for cluster planning. Therefore you
can simply point your browser to http://localhost:8529 (if you are running on the standard
port) and you are guided through the planning and launching of a cluster with a graphical
user interface. Alternatively, you can follow the instructions below to do the same on the
command line interface.

We will first plan and launch a cluster, such that all your servers run on the local machine.

Start up a regular ArangoDB, either in console mode or connect to it with the Arango
shell arangosh. Then you can ask it to plan a cluster for you:

arangodb>	var	Planner	=	require("org/arangodb/cluster").Planner;

arangodb>	p	=	new	Planner({numberOfDBservers:3,	numberOfCoordinators:2});

[object	Object]

If you are curious you can look at the plan of your cluster:

arangodb>	p.getPlan();

This will show you a huge JSON document. More interestingly, some further components
tell you more about the layout of your cluster:

arangodb>	p.DBservers;

[

		{	

				"id"	:	"Pavel",	

				"dispatcher"	:	"me",	

				"port"	:	8629	

		},	

How to try it out

http://localhost:8529

		{	

				"id"	:	"Perry",	

				"dispatcher"	:	"me",	

				"port"	:	8630	

		},	

		{	

				"id"	:	"Pancho",	

				"dispatcher"	:	"me",	

				"port"	:	8631	

		}	

]

arangodb>	p.coordinators;

[

		{	

				"id"	:	"Claus",	

				"dispatcher"	:	"me",	

				"port"	:	8530	

		},	

		{	

				"id"	:	"Chantalle",	

				"dispatcher"	:	"me",	

				"port"	:	8531	

		}	

]

This tells you the ports on which your ArangoDB processes will listen. We will need the
8530 (or whatever appears on your machine) for the coordinators below.

More interesting is that such a cluster plan document can be used to start up the cluster
conveniently using a Kickstarter object. Please note that the launch method of the
kickstarter shown below initialises all data directories and log files, so if you have
previously used the same cluster plan you will lose all your data. Use the relaunch
method described below instead in that case.

arangodb>	var	Kickstarter	=	require("org/arangodb/cluster").Kickstarter;

arangodb>	k	=	new	Kickstarter(p.getPlan());

arangodb>	k.launch();

```js

That	is	all	you	have	to	do,	to	fire	up	your	first	cluster.	You	will	see	some

output,	which	you	can	safely	ignore	(as	long	as	no	error	happens).	

From	that	point	on,	you	can	contact	one	of	the	coordinators	and	use	the	cluster

as	if	it	were	a	single	ArangoDB	instance	(use	the	port	number	from	above

instead	of	8530,	if	you	get	a	different	one)	(probably	from	another

shell	window):

```js

$	arangosh	--server.endpoint	tcp://localhost:8530

[...	some	output	omitted]

arangosh	[_system]>	db._listDatabases();

[

		"_system"	

]

```js

This	for	example,	lists	the	cluster	wide	databases.	

Now,	let	us	create	a	sharded	collection.	Note,	that	we	only	have	to	specify	

the	number	of	shards	to	use	in	addition	to	the	usual	command.	

The	shards	are	automatically	distributed	among	your	DBservers:

```js

arangosh	[_system]>	example	=	db._create("example",{numberOfShards:6});

[ArangoCollection	1000001,	"example"	(type	document,	status	loaded)]

arangosh	[_system]>	x	=	example.save({"name":"Hans",	"age":44});

{	

		"error"	:	false,	

		"_id"	:	"example/1000008",	

		"_rev"	:	"13460426",	

		"_key"	:	"1000008"	

}

arangosh	[_system]>	example.document(x._key);

{	

		"age"	:	44,	

		"name"	:	"Hans",	

		"_id"	:	"example/1000008",	

		"_rev"	:	"13460426",	

		"_key"	:	"1000008"	

}

```js

You	can	shut	down	your	cluster	by	using	the	following	Kickstarter

method	(in	the	ArangoDB	console):

```js

arangodb>	k.shutdown();

If you want to start your cluster again without losing data you have previously stored in it,
you can use the relaunch method in exactly the same way as you previously used the
launch method:

arangodb>	k.relaunch();

Note: If you have destroyed the object k for example because you have shutdown the
ArangoDB instance in which you planned the cluster, then you can reproduce it for a
relaunch operation, provided you have kept the cluster plan object provided by the
getPlan method. If you had for example done:

arangodb>	var	plan	=	p.getPlan();

arangodb>	require("fs").write("saved_plan.json",JSON.stringify(plan));

Then you can later do (in another session):

arangodb>	var	plan	=	require("fs").read("saved_plan.json");

arangodb>	plan	=	JSON.parse(plan);

arangodb>	var	Kickstarter	=	require("org/arangodb/cluster").Kickstarter;

arangodb>	var	k	=	new	Kickstarter(plan);

arangodb>	k.relaunch();

to start the existing cluster anew.

You can check, whether or not, all your cluster processes are still running, by issuing:

arangodb>	k.isHealthy();

This will show you the status of all processes in the cluster. You should see "RUNNING"
there, in all the relevant places.

Finally, to clean up the whole cluster (losing all the data stored in it), do:

arangodb>	k.shutdown();

arangodb>	k.cleanup();

We conclude this section with another example using two machines, which will act as two
dispatchers. We start from scratch using two machines, running on the network
addresses tcp://192.168.173.78:8529 and tcp://192.168.173.13:6789. Both need to have
a regular ArangoDB instance installed and running. Please make sure, that both bind to
all network devices, so that they can talk to each other. Also enable the dispatcher
functionality on both of them, as described above.

arangodb>	var	Planner	=	require("org/arangodb/cluster").Planner;

arangodb>	var	p	=	new	Planner({

				dispatchers:	{"me":{"endpoint":"tcp://192.168.173.78:8529"},

																		"theother":{"endpoint":"tcp://192.168.173.13:6789"}},	

				"numberOfCoordinators":2,	"numberOfDBservers":	2});

With these commands, you create a cluster plan involving two machines. The planner will
put one DBserver and one Coordinator on each machine. You can now launch this
cluster exactly as explained earlier:

				arangodb>	var	Kickstarter	=	require("org/arangodb/cluster").Kickstarter;

				arangodb>	k	=	new	Kickstarter(p.getPlan());

				arangodb>	k.launch();

Likewise, the methods shutdown, relaunch, isHealthy and cleanup work exactly as in the
single server case.

See the corresponding chapter of the reference manual for detailed information about the
Planner and Kickstarter classes.

This version 2.0 of ArangoDB contains the first usable implementation of the sharding
extensions. However, not all planned features are included in this release. In particular,
automatic fail-over is fully prepared in the architecture but is not yet implemented. If you
use Version 2.0 in cluster mode in a production system, you have to organize failure
recovery manually. This is why, at this stage with Version 2.0 we do not yet recommend
to use the cluster mode in production systems. If you really need this feature now, please
contact us.

This section provides an overview over the implemented and future features.

In normal single instance mode, ArangoDB works as usual with the same performance
and functionality as in previous releases.

In cluster mode, the following things are implemented in version 2.0 and work:

All basic CRUD operations for single documents and edges work essentially with
good performance.
One can use sharded collections and can configure the number of shards for each
such collection individually. In particular, one can have fully sharded collections as
well as cluster-wide available collections with only a single shard. After creation,
these differences are transparent to the client.
Creating and dropping cluster-wide databases works.
Creating, dropping and modifying cluster-wide collections all work. Since these
operations occur seldom, we will only improve their performance in a future release,
when we will have our own implementation of the agency as well as a cluster-wide
event managing system (see road map for release 2.3).
Sharding in a collection, can be configured to use hashing on arbitrary properties of
the documents in the collection.
Creating and dropping indices on sharded collections works. Please note that an
index on a sharded collection is not a global index but only leads to a local index of
the same type on each shard.
All SimpleQueries work. Again, we will improve the performance in future releases,
when we revisit the AQL query optimizer (see road map for release 2.2).
AQL queries work, but with relatively bad performance. Also, if the result of a query
on a sharded collection is large, this can lead to an out of memory situation on the
coordinator handling the request. We will improve this situation when we revisit the
AQL query optimizer (see road map for release 2.2).

Status of the implementation

Authentication on the cluster works with the method known from single ArangoDB
instances on the coordinators. A new cluster-internal authorization scheme has been
created. See below for hints on a sensible firewall and authorization setup.
Most standard API calls of the REST interface work on the cluster as usual, with a
few exceptions, which do no longer make sense on a cluster or are harder to
implement. See below for details.

The following does not yet work, but is planned for future releases (see road map):

Transactions can be run, but do not behave like transactions. They simply execute
but have no atomicity or isolation in version 2.0. See the road map for version 2.X.
Data-modification AQL queries are not executed atomically or isolated. If a data-
modification AQL query fails for one shard, it might be rolled back there, but still
complete on other shards.
Data-modification AQL queries require a _key attribute in documents in order to
operate. If a different shard key is chosen for a collection, specifying the _key
attribute is currently still required. This restriction might be lifted in a future release.
We plan to revise the AQL optimizer for version 2.2. This is necessary since for
efficient queries in cluster mode we have to do as much as possible of the filtering
and sorting on the individual DBservers rather than on the coordinator.
Our software architecture is fully prepared for replication, automatic fail-over and
recovery of a cluster, which will be implemented for version 2.3 (see our road map).
This setup will at the same time, allow for hot swap and in-service maintenance and
scaling of a cluster. However, in version 2.0 the cluster layout is static and no
redistribution of data between the DBservers or moving of shards between servers is
possible.
At this stage the sharding of an edge collection is independent of the sharding of the
corresponding vertex collection in a graph. For version 2.2 we plan to synchronize
the two, to allow for more efficient graph traversal functions in large, sharded graphs.
We will also do research on distributed algorithms for graphs and implement new
algorithms in ArangoDB. However, at this stage, all graph traversal algorithms are
executed on the coordinator and this means relatively poor performance since every
single edge step leads to a network exchange.
In version 2.0 the import API is broken for sharded collections. It will appear to work
but will in fact silently fail. Fixing this is on the road map for version 2.1.
In version 2.0 the arangodump and arangorestore programs can not be used talking
to a coordinator to directly backup sharded collections. At this stage, one has to
backup the DBservers individually using arangodump and arangorestore on them.
The coordinators themselves do not hold any state and therefore do not need
backup. Do not forget to backup the meta data stored in the agency because this is

essential to access the sharded collections. These limitations will be fixed in version
2.1.
In version 2.0 the replication API (/_api/replication) does not work on coordinators.
This is intentional, since the plan is to organize replication with automatic fail-over
directly on the DBservers, which is planned for version 2.3.
The db..rotate() method for sharded collections is not yet implemented, but will be
supported from version 2.1 onwards.
The db..rename() method for sharded collections is not yet implemented, but will be
supported from version 2.1 onwards.
The db..checksum() method for sharded collections is not yet implemented, but will
be supported from version 2.1 onwards.

The following restrictions will probably stay, for cluster mode, even in future versions.
This is, because they are difficult or even impossible to implement efficiently:

Custom key generators with the keyOptions property in the _create method for
collections are not supported. We plan to improve this for version 2.1 (see road
map). However, due to the distributed nature of a sharded collection, not everything
that is possible in the single instance situation will be possible on a cluster. For
example the auto-increment feature in a cluster with multiple DBservers and
coordinators would have to lock the whole collection centrally for every document
creation, which essentially defeats the performance purpose of sharding.
Unique constraints on non-sharding keys are unsupported. The reason for this is that
we do not plan to have global indices for sharded collections. Therefore, there is no
single authority that could efficiently decide whether or not the unique constraint is
satisfied by a new document. The only possibility would be to have a central locking
mechanism and use heavy communication for every document creation to ensure
the unique constraint.
The method db..revision() for a sharded collection returns the highest revision
number from all shards. However, revision numbers are assigned per shard, so this
is not guaranteed to be the revision of the latest inserted document. Again,
maintaining a global revision number over all shards is very difficult to maintain
efficiently.
The methods db..first() and db..last() are unsupported for collections with more than
one shard. The reason for this, is that temporal order in a highly parallelized
environment like a cluster is difficult or even impossible to achieve efficiently. In a
cluster it is entirely possible that two different coordinators add two different
documents to two different shards at the same time. In such a situation it is not even
well-defined which of the two documents is "later". The only way to overcome this
fundamental problem would again be a central locking mechanism, which is not

desirable for performance reasons.
Contrary to the situation in a single instance, objects representing sharded
collections are broken after their database is dropped. In a future version they might
report that they are broken, but it is not feasible and not desirable to retain the
cluster database in the background until all collection objects are garbage collected.
In a cluster, the automatic creation of collections on a call to db._save(ID) is not
supported. This is because one would have no way to specify the number or
distribution of shards for the newly created collection. Therefore we will not offer this
feature for cluster mode.

In this section we describe, how authentication in a cluster is done properly. For
experiments it is possible to run the cluster completely unauthorized by using the option -
-server.disable-authentication true on the command line or the corresponding entry in the
configuration file. However, for production use, this is not desirable.

You can turn on authentication in the cluster by switching it on in the configuration of your
dispatchers. When you now use the planner and kickstarter to create and launch a
cluster, the arangod processes in your cluster will automatically run with authentication,
exactly as the dispatchers themselves. However, the cluster will have a sharded
collection _users with one shard containing only the user root with an empty password.
We emphasize that this sharded cluster-wide collection is different from the _users
collections in each dispatcher!

The coordinators in your cluster will use this cluster-wide sharded collection to
authenticate HTTP requests. If you add users using the usual methods via a coordinator,
you will in fact change the cluster-wide collection _users and thus all coordinators will
eventually see the new users and authenticate against them. "Eventually" means that
they might need a few seconds to notice the change in user setup and update their user
cache.

The DBservers will have their authentication switched on as well. However, they do not
use the cluster-wide _users collection for authentication, because the idea is, that the
outside clients do not talk to the DBservers directly, but always go via the coordinators.
For the cluster-internal communication between coordinators and DBservers (in both
directions), we use a simpler setup: There are two new configuration options
cluster.username and cluster.password, which default to root and the empty password "".
If you want to deviate from this default you have to change these two configuration
options in all configuration files on all machines in the cluster. This just means that you
have to set these two options to the same values in all configuration files arangod.conf in
all dispatchers, since the coordinators and DBservers will simply inherit this configuration
file from the dispatcher that has launched them.

Let us summarize what you have to do, to enable authentication in a cluster:

1. Set server.disable-authentication to false in all configuration files of all dispatchers
(this is already the default).

2. Put the same values for cluster.username and cluster.password in the very same

Authentication in a cluster

configuration files of all dispatchers.
3. Create users via the usual interface on the coordinators (initially after the cluster

launch there will be a single user root with empty password).

Please note, that in Version 2.0 of ArangoDB you can already configure the endpoints of
the coordinators to use SSL. However, this is not yet conveniently supported in the
planner, kickstarter and in the graphical cluster management tools. We will fix this in the
next version.

Please also consider the comments in the following section about firewall setup.

This section is intended for people who run a cluster in production systems.

The whole idea of the cluster setup is that the coordinators serve HTTP requests to the
outside world and that all other processes (DBservers and agency) are only available
from within the cluster itself. Therefore, in a production environment, one has to put the
whole cluster behind a firewall and only open the ports to the coordinators to the client
processes.

Note however that for the asynchronous cluster-internal communication, the DBservers
perform HTTP requests to the coordinators, which means that the coordinators must also
be reachable from within the cluster.

Furthermore, it is of the utmost importance to hide the agent processes of the agency
behind the firewall, since, at least at this stage, requests to them are completely
unauthorized. Leaving their ports exposed to the outside world, endangers all data in the
cluster, because everybody on the internet could make the cluster believe that, for
example, you wanted your databases dropped! This weakness will be alleviated in future
versions, because we will replace etcd by our own specialized agency implementation,
which will allow for authentication.

A further comment applies to the dispatchers. Usually you will open the HTTP endpoints
of your dispatchers to the outside world and switch on authentication for them. This is
necessary to contact them from the outside, in the cluster launch phase. However,
actually you only need to contact one of them, who will then in turn contact the others
using cluster-internal communication. You can even get away with closing access to all
dispatchers to the outside world, provided the machine running your browser is within the
cluster network and does not have to go through the firewall to contact the dispatchers. It
is important to be aware that anybody who can reach a dispatcher and can authorize
himself to it can launch arbitrary processes on the machine on which the dispatcher runs!

Therefore we recommend to use SSL endpoints with user/password authentication on
the dispatchers and to block access to them in the firewall. You then have to launch the
cluster using an arangosh or browser running within the cluster.

Recommended firewall setup

Configuration Files

Options can be specified on the command line or in configuration files. If a string Variable
occurs in the value, it is replaced by the corresponding environment variable.

General help

	--help	

	-h	

Prints a list of the most common options available and then exits. In order to see all
options use --help-all. Version

	--version	

	-v	

Prints the version of the server and exits. Upgrade 	--upgrade	

Specifying this option will make the server perform a database upgrade at start. A
database upgrade will first compare the version number stored in the file VERSION in the
database directory with the current server version.

If the two version numbers match, the server will start normally.

If the version number found in the database directory is higher than the version number
the server is running, the server expects this is an unintentional downgrade and will warn
about this. It will however start normally. Using the server in these conditions is however
not recommended nor supported.

If the version number found in the database directory is lower than the version number
the server is running, the server will check whether there are any upgrade tasks to
perform. It will then execute all required upgrade tasks and print their statuses. If one of
the upgrade tasks fails, the server will exit and refuse to start. Re-starting the server with
the upgrade option will then again trigger the upgrade check and execution until the

Command-line options

General Options

problem is fixed. If all tasks are finished, the server will start normally.

Whether or not this option is specified, the server will always perform a version check on
startup. Running the server with a non-matching version number in the VERSION file will
make the server refuse to start.

Configuration

	--configuration	filename	

	-c	filename	

Specifies the name of the configuration file to use.

If this command is not passed to the server, then by default, the server will attempt to first
locate a file named ~/.arango/arangod.conf in the user's home directory.

If no such file is found, the server will proceed to look for a file arangod.conf in the system
configuration directory. The system configuration directory is platform-specific, and may
be changed when compiling ArangoDB yourself. It may default to /etc/arangodb or
/usr/local/etc/arangodb. This file is installed when using a package manager like rpm or
dpkg. If you modify this file and later upgrade to a new version of ArangoDB, then the
package manager normally warns you about the conflict. In order to avoid these warning
for small adjustments, you can put local overrides into a file arangod.conf.local.

Only command line options with a value should be set within the configuration file.
Command line options which act as flags should be entered on the command line when
starting the server.

Whitespace in the configuration file is ignored. Each option is specified on a separate line
in the form

key	=	value

Alternatively, a header section can be specified and options pertaining to that section can
be specified in a shorter form

[log]	

level	=	trace

rather than specifying

log.level	=	trace

Comments can be placed in the configuration file, only if the line begins with one or more
hash symbols (#).

There may be occasions where a configuration file exists and the user wishes to override
configuration settings stored in a configuration file. Any settings specified on the
command line will overwrite the same setting when it appears in a configuration file. If the
user wishes to completely ignore configuration files without necessarily deleting the file
(or files), then add the command line option

-c	none

or

--configuration	none

When starting up the server. Note that, the word none is case-insensitive. Daemon 	--
daemon	

Runs the server as a daemon (as a background process). This parameter can only be set
if the pid (process id) file is specified. That is, unless a value to the parameter pid-file is
given, then the server will report an error and exit.

Default Language

	--default-language	default-language	

The default language ist used for sorting and comparing strings. The language value is a
two-letter language code (ISO-639) or it is composed by a two-letter language code with
and a two letter country code (ISO-3166). Valid languages are "de", "en", "en_US" or
"en_UK".

The default default-language is set to be the system locale on that platform. Supervisor 	-
-supervisor	

Executes the server in supervisor mode. In the event that the server unexpectedly

terminates due to an internal error, the supervisor will automatically restart the server.
Setting this flag automatically implies that the server will run as a daemon. Note that, as
with the daemon flag, this flag requires that the pid-file parameter will set.

unix>	./arangod	--supervisor	--pid-file	/var/run/arangodb.pid	/tmp/vocbase/

2012-06-27T15:58:28Z	[10133]	INFO	starting	up	in	supervisor	mode

As can be seen (e.g. by executing the ps command), this will start a supervisor process
and the actual database process:

unix>	ps	fax	|	grep	arangod

10137	?								Ssl				0:00	./arangod	--supervisor	--pid-file	/var/run/arangodb.pid	/tmp/vocbase/

10142	?								Sl					0:00		_	./arangod	--supervisor	--pid-file	/var/run/arangodb.pid	/tmp/vocbase/

When the database process terminates unexpectedly, the supervisor process will start up
a new database process:

>	kill	-SIGSEGV	10142

>	ps	fax	|	grep	arangod

10137	?								Ssl				0:00	./arangod	--supervisor	--pid-file	/var/run/arangodb.pid	/tmp/vocbase/

10168	?								Sl					0:00		_	./arangod	--supervisor	--pid-file	/var/run/arangodb.pid	/tmp/vocbase/

User identity

	--uid	uid	

The name (identity) of the user the server will run as. If this parameter is not specified,
the server will not attempt to change its UID, so that the UID used by the server will be
the same as the UID of the user who started the server. If this parameter is specified,
then the server will change its UID after opening ports and reading configuration files, but
before accepting connections or opening other files (such as recovery files). This is useful
when the server must be started with raised privileges (in certain environments) but
security considerations require that these privileges be dropped once the server has
started work.

Observe that this parameter cannot be used to bypass operating system security. In
general, this parameter (and its corresponding relative gid) can lower privileges but not

raise them. Group identity

	--gid	gid	

The name (identity) of the group the server will run as. If this parameter is not specified,
then the server will not attempt to change its GID, so that the GID the server runs as will
be the primary group of the user who started the server. If this parameter is specified,
then the server will change its GID after opening ports and reading configuration files, but
before accepting connections or opening other files (such as recovery files).

This parameter is related to the parameter uid. Process identity

	--pid-file	filename	

The name of the process ID file to use when running the server as a daemon. This
parameter must be specified if either the flag daemon or supervisor is set. Console 	--
console	

Runs the server in an exclusive emergency console mode. When starting the server with
this option, the server is started with an interactive JavaScript emergency console, with
all networking and HTTP interfaces of the server disabled.

No requests can be made to the server in this mode, and the only way to work with the
server in this mode is by using the emergency console. Note that the server cannot be
started in this mode if it is already running in this or another mode.

	--development-mode	

Specifying this option will start the server in development mode. The development mode
forces reloading of all actions and Foxx applications on every HTTP request. This is very
resource-intensive and slow, but makes developing server-side actions and Foxx
applications much easier.

WARNING: Never use this option in production.

Command-Line Options for Development

Endpoint 	--server.endpoint	endpoint	

Specifies an endpoint for HTTP requests by clients. Endpoints have the following pattern:

tcp://ipv4-address:port - TCP/IP endpoint, using IPv4
tcp://[ipv6-address]:port - TCP/IP endpoint, using IPv6
ssl://ipv4-address:port - TCP/IP endpoint, using IPv4, SSL encryption
ssl://[ipv6-address]:port - TCP/IP endpoint, using IPv6, SSL encryption
unix:///path/to/socket - Unix domain socket endpoint

If a TCP/IP endpoint is specified without a port number, then the default port (8529) will
be used. If multiple endpoints need to be used, the option can be repeated multiple times.

Examples

unix>	./arangod	--server.endpoint	tcp://127.0.0.1:8529

		--server.endpoint	ssl://127.0.0.1:8530

		--server.keyfile	server.pem	/tmp/vocbase

2012-07-26T07:07:47Z	[8161]	INFO	using	SSL	protocol	version	'TLSv1'

2012-07-26T07:07:48Z	[8161]	INFO	using	endpoint	'ssl://127.0.0.1:8530'	for	http	ssl	requests

2012-07-26T07:07:48Z	[8161]	INFO	using	endpoint	'tcp://127.0.0.1:8529'	for	http	tcp	requests

2012-07-26T07:07:49Z	[8161]	INFO	ArangoDB	(version	1.1.alpha)	is	ready	for	business

2012-07-26T07:07:49Z	[8161]	INFO	Have	Fun!

Note: If you are using SSL-encrypted endpoints, you must also supply the path to a
server certificate using the --server.keyfile option.

Endpoints can also be changed at runtime. Reuse address 	--server.reuse-address	

If this boolean option is set to true then the socket option SO_REUSEADDR is set on all
server endpoints, which is the default. If this option is set to false it is possible that it
takes up to a minute after a server has terminated until it is possible for a new server to
use the same endpoint again. This is why this is activated by default.

Please note however that under some operating systems this can be a security risk
because it might be possible for another process to bind to the same address and port,
possibly hijacking network traffic. Under Windows, ArangoDB additionally sets the flag
SO_EXCLUSIVEADDRUSE as a measure to alleviate this problem. Disable

Command-Line Options for arangod

authentication 	--server.disable-authentication	

Setting value to true will turn off authentication on the server side so all clients can
execute any action without authorization and privilege checks.

The default value is false. Disable authentication-unix-sockets 	--server.disable-
authentication-unix-sockets	value	

Setting value to true will turn off authentication on the server side for requests coming in
via UNIX domain sockets. With this flag enabled, clients located on the same host as the
ArangoDB server can use UNIX domain sockets to connect to the server without
authentication. Requests coming in by other means (e.g. TCP/IP) are not affected by this
option.

The default value is false.

Note: this option is only available on platforms that support UNIX domain sockets.
Authenticate system only 	--server.authenticate-system-only	boolean	

Controls whether incoming requests need authentication only if they are directed to the
ArangoDB's internal APIs and features, located at /_api/, /_admin/ etc.

IF the flag is set to true, then HTTP authentication is only required for requests going to
URLs starting with /_, but not for other URLs. The flag can thus be used to expose a
user-made API without HTTP authentication to the outside world, but to prevent the
outside world from using the ArangoDB API and the admin interface without
authentication. Note that checking the URL is performed after any database name prefix
has been removed. That means when the actual URL called is
/_db/_system/myapp/myaction, the URL /myapp/myaction will be used for authenticate-
system-only check.

The default is false.

Note that authentication still needs to be enabled for the server regularly in order for
HTTP authentication to be forced for the ArangoDB API and the web interface. Setting
only this flag is not enough.

You can control ArangoDB's general authentication feature with the --server.disable-
authentication flag. Disable replication-applier 	--server.disable-replication-applier
flag	

If true the server will start with the replication applier turned off, even if the replication

applier is configured with the autoStart option. Using the command-line option will not
change the value of the autoStart option in the applier configuration, but will suppress
auto-starting the replication applier just once.

If the option is not used, ArangoDB will read the applier configuration from the file
REPLICATION-APPLIER-CONFIG on startup, and use the value of the autoStart
attribute from this file.

The default is false. Timeout 	--server.keep-alive-timeout	

Allows to specify the timeout for HTTP keep-alive connections. The timeout value must
be specified in seconds. Idle keep-alive connections will be closed by the server
automatically when the timeout is reached. A keep-alive-timeout value 0 will disable the
keep alive feature entirely. Default Api 	--server.default-api-compatibility	

This option can be used to determine the API compatibility of the ArangoDB server. It
expects an ArangoDB version number as an integer, calculated as follows:

10000 \ major + 100 * minor (example: 10400 for ArangoDB 1.4)*

The value of this option will have an influence on some API return values when the HTTP
client used does not send any compatibility information.

In most cases it will be sufficient to not set this option explicitly but to keep the default
value. However, in case an "old" ArangoDB client is used that does not send any
compatibility information and that cannot handle the responses of the current version of
ArangoDB, it might be reasonable to set the option to an old version number to improve
compatibility with older clients. Allow method override 	--server.allow-method-override	

When this option is set to true, the HTTP request method will optionally be fetched from
one of the following HTTP request headers if present in the request:

x-http-method
x-http-method-override
x-method-override

If the option is set to true and any of these headers is set, the request method will be
overriden by the value of the header. For example, this allows issuing an HTTP DELETE
request which to the outside world will look like an HTTP GET request. This allows
bypassing proxies and tools that will only let certain request types pass.

Setting this option to true may impose a security risk so it should only be used in

controlled environments.

The default value for this option is false. Keyfile 	--server.keyfile	filename	

If SSL encryption is used, this option must be used to specify the filename of the server
private key. The file must be PEM formatted and contain both the certificate and the
server's private key.

The file specified by filename should have the following structure:

#	create	private	key	in	file	"server.key"

openssl	genrsa	-des3	-out	server.key	1024

#	create	certificate	signing	request	(csr)	in	file	"server.csr"

openssl	req	-new	-key	server.key	-out	server.csr

#	copy	away	original	private	key	to	"server.key.org"

cp	server.key	server.key.org

#	remove	passphrase	from	the	private	key

openssl	rsa	-in	server.key.org	-out	server.key

#	sign	the	csr	with	the	key,	creates	certificate	PEM	file	"server.crt"

openssl	x509	-req	-days	365	-in	server.csr	-signkey	server.key	-out	server.crt

#	combine	certificate	and	key	into	single	PEM	file	"server.pem"

cat	server.crt	server.key	>	server.pem

You may use certificates issued by a Certificate Authority or self-signed certificates. Self-
signed certificates can be created by a tool of your choice. When using OpenSSL for
creating the self-signed certificate, the following commands should create a valid keyfile:

-----BEGIN	CERTIFICATE-----

(base64	encoded	certificate)

-----END	CERTIFICATE-----

-----BEGIN	RSA	PRIVATE	KEY-----

(base64	encoded	private	key)

-----END	RSA	PRIVATE	KEY-----

For further information please check the manuals of the tools you use to create the
certificate.

Note: the --server.keyfile option must be set if the server is started with at least one SSL
endpoint. Cafile 	--server.cafile	filename	

This option can be used to specify a file with CA certificates that are sent to the client
whenever the server requests a client certificate. If the file is specified, The server will
only accept client requests with certificates issued by these CAs. Do not specify this
option if you want clients to be able to connect without specific certificates.

The certificates in filename must be PEM formatted.

Note: this option is only relevant if at least one SSL endpoint is used. SSL protocol 	--
server.ssl-protocolvalue	

Use this option to specify the default encryption protocol to be used. The following
variants are available:

1: SSLv2
2: SSLv23
3: SSLv3
4: TLSv1

The default value is 4 (i.e. TLSv1).

Note: this option is only relevant if at least one SSL endpoint is used. SSL Cache 	--
server.ssl-cache	value	

Set to true if SSL session caching should be used.

value has a default value of false (i.e. no caching).

Note: this option is only relevant if at least one SSL endpoint is used, and only if the
client supports sending the session id. SSL options 	--server.ssl-options	value	

This option can be used to set various SSL-related options. Individual option values must
be combined using bitwise OR.

Which options are available on your platform is determined by the OpenSSL version you

use. The list of options available on your platform might be retrieved by the following shell
command:

	>	grep	"#define	SSL_OP_.*"	/usr/include/openssl/ssl.h

	#define	SSL_OP_MICROSOFT_SESS_ID_BUG																				0x00000001L

	#define	SSL_OP_NETSCAPE_CHALLENGE_BUG																			0x00000002L

	#define	SSL_OP_LEGACY_SERVER_CONNECT																				0x00000004L

	#define	SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG									0x00000008L

	#define	SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG														0x00000010L

	#define	SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER															0x00000020L

	...

A description of the options can be found online in the OpenSSL documentation

Note: this option is only relevant if at least one SSL endpoint is used. SSL Cipher 	--
server.ssl-cipher-list	cipher-list	

This option can be used to restrict the server to certain SSL ciphers only, and to define
the relative usage preference of SSL ciphers.

The format of cipher-list is documented in the OpenSSL documentation.

To check which ciphers are available on your platform, you may use the following shell
command:

>	openssl	ciphers	-v

ECDHE-RSA-AES256-SHA				SSLv3	Kx=ECDH					Au=RSA		Enc=AES(256)		Mac=SHA1

ECDHE-ECDSA-AES256-SHA		SSLv3	Kx=ECDH					Au=ECDSA	Enc=AES(256)		Mac=SHA1

DHE-RSA-AES256-SHA						SSLv3	Kx=DH							Au=RSA		Enc=AES(256)		Mac=SHA1

DHE-DSS-AES256-SHA						SSLv3	Kx=DH							Au=DSS		Enc=AES(256)		Mac=SHA1

DHE-RSA-CAMELLIA256-SHA	SSLv3	Kx=DH							Au=RSA		Enc=Camellia(256)	Mac=SHA1

...

The default value for cipher-list is "ALL".

Note: this option is only relevant if at least one SSL endpoint is used. Backlog 	--
server.backlog-size	

Allows to specify the size of the backlog for the listen system call The default value is 10.
The maximum value is platform-dependent. Disable statics

http://www.openssl.org/docs/ssl/SSL_CTX_set_options.html

	--disable-statistics	value	

If this option is value is true, then ArangoDB's statistics gathering is turned off. Statistics
gathering causes constant CPU activity so using this option to turn it off might relieve
heavy-loaded instances. Note: this option is only available when ArangoDB has not been
compiled with the option --disable-figures.

Directory 	--database.directory	directory	

The directory containing the collections and datafiles. Defaults to /var/lib/arango. When
specifying the database directory, please make sure the directory is actually writable by
the arangod process.

You should further not use a database directory which is provided by a network
filesystem such as NFS. The reason is that networked filesystems might cause
inconsistencies when there are multiple parallel readers or writers or they lack features
required by arangod (e.g. flock()).

	directory	

When using the command line version, you can simply supply the database directory as
argument.

Examples

>	./arangod	--server.endpoint	tcp://127.0.0.1:8529	--database.directory	/tmp/vocbase

Journal size

	--database.maximal-journal-size	size	

Maximal size of journal in bytes. Can be overwritten when creating a new collection. Note
that this also limits the maximal size of a single document.

The default is 32MB. Wait for sync 	--database.wait-for-sync	boolean	

Default wait-for-sync value. Can be overwritten when creating a new collection.

The default is false. Force syncing of properties 	--database.force-sync-properties
boolean	

Force syncing of collection properties to disk after creating a collection or updating its
properties.

If turned off, no fsync will happen for the collection and database properties stored in
	parameter.json	 files in the file system. Turning off this option will speed up workloads
that create and drop a lot of collections (e.g. test suites).

The default is true. Frequency 	--javascript.gc-frequency	frequency	

Specifies the frequency (in seconds) for the automatic garbage collection of JavaScript
objects. This setting is useful to have the garbage collection still work in periods with no
or little numbers of requests. Startup gc-interval 	--javascript.gc-interval	interval	

Specifies the interval (approximately in number of requests) that the garbage collection
for JavaScript objects will be run in each thread. V8 options 	--javascript.v8-options
options	

Optional arguments to pass to the V8 Javascript engine. The V8 engine will run with
default settings unless explicit options are specified using this option. The options passed
will be forwarded to the V8 engine which will parse them on its own. Passing invalid
options may result in an error being printed on stderr and the option being ignored.

Options need to be passed in one string, with V8 option names being prefixed with
double dashes. Multiple options need to be separated by whitespace. To get a list of all
available V8 options, you can use the value "--help" as follows:

--javascript.v8-options	"--help"

Another example of specific V8 options being set at startup:

--javascript.v8-options	"--harmony	--log"

Names and features or usable options depend on the version of V8 being used, and
might change in the future if a different version of V8 is being used in ArangoDB. Not all
options offered by V8 might be sensible to use in the context of ArangoDB. Use the
specific options only if you are sure that they are not harmful for the regular database
operation.

Since ArangoDB 2.2, the server will write all data-modification operations into its write-
ahead log.

The write-ahead log is a sequence of logfiles that are written in an append-only fashion.
Full logfiles will eventually be garbage-collected, and the relevant data might be
transferred into collection journals and datafiles. Unneeded and already garbage-
collected logfiles will either be deleted or kept for the purpose of keeping a replication
backlog.

Directory

	--wal.directory	

Specifies the directory in which the write-ahead logfiles should be stored. If this option is
not specified, it defaults to the subdirectory journals in the server's global database
directory. If the directory is not present, it will be created. Logfile size

	--wal.logfile-size	

Specifies the filesize (in bytes) for each write-ahead logfile. The logfile size should be
chosen so that each logfile can store a considerable amount of documents. The bigger
the logfile size is chosen, the longer it will take to fill up a single logfile, which also
influences the delay until the data in a logfile will be garbage-collected and written to
collection journals and datafiles. It also affects how long logfile recovery will take at
server start. Allow oversize entries

	--wal.allow-oversize-entries	

Whether or not it is allowed to store individual documents that are bigger than would fit
into a single logfile. Setting the option to false will make such operations fail with an error.
Setting the option to true will make such operations succeed, but with a high potential
performance impact. The reason is that for each oversize operation, an individual
oversize logfile needs to be created which may also block other operations. The option
should be set to false if it is certain that documents will always have a size smaller than a
single logfile. Suppress shape information

	--wal.suppress-shape-information	

Setting this variable to true will lead to no shape information being written into the write-

Write-ahead log options

ahead logfiles for documents or edges. While this is a good optimization for a single
server to save memory (and disk space), it it will effectively disable using the write-ahead
log as a reliable source for replicating changes to other servers. A master server with this
option set to true will not be able to fully reproduce the structure of saved documents
after a collection has been deleted. In case a replication client requests a document for
which the collection is already deleted, the master will return an empty document. Note
that this only affects replication and not normal operation on the master.

Do not set this variable to true on a server that you plan to use as a replication
master Number of reserve logfiles

	--wal.reserve-logfiles	

The maximum number of reserve logfiles that ArangoDB will create in a background
process. Reserve logfiles are useful in the situation when an operation needs to be
written to a logfile but the reserve space in the logfile is too low for storing the operation.
In this case, a new logfile needs to be created to store the operation. Creating new
logfiles is normally slow, so ArangoDB will try to pre-create logfiles in a background
process so there are always reserve logfiles when the active logfile gets full. The number
of reserve logfiles that ArangoDB keeps in the background is configurable with this
option. Number of historic logfiles

	--wal.historic-logfiles	

The maximum number of historic logfiles that ArangoDB will keep after they have been
garbage-collected. If no replication is used, there is no need to keep historic logfiles
except for having a local changelog.

In a replication setup, the number of historic logfiles affects the amount of data a slave
can fetch from the master's logs. The more historic logfiles, the more historic data is
available for a slave, which is useful if the connection between master and slave is
unstable or slow. Not having enough historic logfiles available might lead to logfile data
being deleted on the master already before a slave has fetched it. Sync interval

	--wal.sync-interval	

The interval (in milliseconds) that ArangoDB will use to automatically synchronize data in
its write-ahead logs to disk. Automatic syncs will only be performed for not-yet
synchronized data, and only for operations that have been executed without the
waitForSync attribute. Throttling

	--wal.throttle-when-pending	

The maximum value for the number of write-ahead log garbage-collection queue
elements. If set to 0, the queue size is unbounded, and no writtle-throttling will occur. If
set to a non-zero value, writte-throttling will automatically kick in when the garbage-
collection queue contains at least as many elements as specified by this option. While
write-throttling is active, data-modification operations will intentionally be delayed by a
configurable amount of time. This is to ensure the write-ahead log garbage collector can
catch up with the operations executed. Write-throttling will stay active until the garbage-
collection queue size goes down below the specified value. Write-throttling is turned off
by default.

	--wal.throttle-wait	

This option determines the maximum wait time (in milliseconds) for operations that are
write-throttled. If write-throttling is active and a new write operation is to be executed, it
will wait for at most the specified amount of time for the write-ahead log garbage-
collection queue size to fall below the throttling threshold. If the queue size decreases
before the maximum wait time is over, the operation will be executed normally. If the
queue size does not decrease before the wait time is over, the operation will be aborted
with an error. This option only has an effect if 	--wal.throttle-when-pending	 has a non-
zero value, which is not the default. Number of slots

	--wal.slots	

Configures the amount of write slots the write-ahead log can give to write operations in
parallel. Any write operation will lease a slot and return it to the write-ahead log when it is
finished writing the data. A slot will remain blocked until the data in it was synchronized to
disk. After that, a slot becomes reusable by following operations. The required number of
slots is thus determined by the parallelity of write operations and the disk synchronization
speed. Slow disks probably need higher values, and fast disks may only require a value
lower than the default. Ignore logfile errors

	--wal.ignore-logfile-errors	

Ignores any recovery errors caused by corrupted logfiles on startup. When set to false,
the recovery procedure on startup will fail with an error whenever it encounters a
corrupted (that includes only half-written) logfile. This is a security precaution to prevent
data loss in case of disk errors etc. When the recovery procedure aborts because of
corruption, any corrupted files can be inspected and fixed (or removed) manually and the
server can be restarted afterwards.

Setting the option to true will make the server continue with the recovery procedure even
in case it detects corrupt logfile entries. In this case it will stop at the first corrupted logfile

entry and ignore all others, which might cause data loss. Ignore recovery errors

	--wal.ignore-recovery-errors	

Ignores any recovery errors not caused by corrupted logfiles but by logical errors. Logical
errors can occur if logfiles or any other server datafiles have been manually edited or the
server is somehow misconfigured.

The ArangoDB server can listen for incoming requests on multiple endpoints.

The endpoints are normally specified either in ArangoDB's configuration file or on the
command-line, using the "--server.endpoint" option. The default endpoint for ArangoDB is
tcp://127.0.0.1:8529 or tcp://localhost:8529.

The number of endpoints can also be changed at runtime using the API described below.
Each endpoint can optionally be restricted to a specific list of databases only, thus
allowing the usage of different port numbers for different databases.

This may be useful in multi-tenant setups. A multi-endpoint setup may also be useful to
turn on encrypted communication for just specific databases.

The JavaScript interface for endpoints provides operations to add new endpoints at
runtime, and optionally restrict them for use with specific databases. The interface also
can be used to update existing endpoints or remove them at runtime.

Please note that all endpoint management operations can only be accessed via the
default database (_system) and none of the other databases.

When not in the default database, you must first switch to it using the db._useDatabase
method.

List

	db._listEndpoints()	

Returns a list of all endpoints and their mapped databases.

Please note that managing endpoints can only be performed from out of the _system
database. When not in the default database, you must first switch to it using the
"db._useDatabase" method. Configure

	db._configureEndpoint(endpoint,	databases)	

JavaScript Interface for managing
Endpoints

Configuring and Removing Endpoints

Adds and connects or updates the endpoint.

The optional databases argument allows restricting the endpoint for use with specific
databases only. The first database in the list will automatically become the default
database for the endpoint. The default database will be used for incoming requests that
do not specify the database name explicitly.

If databases is an empty list, the endpoint will allow access to all existing databases.

The adjusted list of endpoints is saved in a file ENDPOINTS in the database directory.
The endpoints are restored from the file at server start.

Please note that managing endpoints can only be performed from out of the _system
database. When not in the default database, you must first switch to it using the
"db._useDatabase" method. Remove

	db._removeEndpoint(endpoint)	

Disconnects and removes the endpoint. If the endpoint was not configured before, the
operation will fail. If the endpoint happens to be the last bound endpoint, the operation
will also fail as disconnecting would make the server unable to communicate with any
clients.

The adjusted list of endpoints is saved in a file ENDPOINTS in the database directory.
The endpoints are restored from the file at server start.

Please note that managing endpoints can only be performed from out of the _system
database. When not in the default database, you must first switch to it using the
"db._useDatabase" method.

Agency endpoint

	--cluster.agency-endpoint	endpoint	

An agency endpoint the server can connect to. The option can be specified multiple times
so the server can use a cluster of agency servers. Endpoints have the following pattern:

tcp://ipv4-address:port - TCP/IP endpoint, using IPv4
tcp://[ipv6-address]:port - TCP/IP endpoint, using IPv6
ssl://ipv4-address:port - TCP/IP endpoint, using IPv4, SSL encryption
ssl://[ipv6-address]:port - TCP/IP endpoint, using IPv6, SSL encryption

At least one endpoint must be specified or ArangoDB will refuse to start. It is
recommended to specify at least two endpoints so ArangoDB has an alternative endpoint
if one of them becomes unavailable.

Examples

--cluster.agency-endpoint	tcp://192.168.1.1:4001	--cluster.agency-endpoint	tcp://192.168.1.2:4002

Agency prefix

	--cluster.agency-prefix	prefix	

The global key prefix used in all requests to the agency. The specified prefix will become
part of each agency key. Specifying the key prefix allows managing multiple ArangoDB
clusters with the same agency server(s).

prefix must consist of the letters a-z, A-Z and the digits 0-9 only. Specifying a prefix is
mandatory.

Examples

--cluster.prefix	mycluster

Command-Line Options for Clusters

MyId

`--cluster.my-id id

The local server's id in the cluster. Specifying id is mandatory on startup. Each server of
the cluster must have a unique id.

Specifying the id is very important because the server id is used for determining the
server's role and tasks in the cluster.

id must be a string consisting of the letters a-z, A-Z or the digits 0-9 only. MyAddress

	--cluster.my-address	endpoint	

The server's endpoint for cluster-internal communication. If specified, it must have the
following pattern:

tcp://ipv4-address:port - TCP/IP endpoint, using IPv4
tcp://[ipv6-address]:port - TCP/IP endpoint, using IPv6
ssl://ipv4-address:port - TCP/IP endpoint, using IPv4, SSL encryption
ssl://[ipv6-address]:port - TCP/IP endpoint, using IPv6, SSL encryption

If no endpoint is specified, the server will look up its internal endpoint address in the
agency. If no endpoint can be found in the agency for the server's id, ArangoDB will
refuse to start.

Examples

--cluster.my-address	tcp://192.168.1.1:8530

Username

	--cluster.username	username	

The username used for authorization of cluster-internal requests. This username will be
used to authenticate all requests and responses in cluster-internal communication, i.e.
requests exchanged between coordinators and individual database servers.

This option is used for cluster-internal requests only. Regular requests to coordinators
are authenticated normally using the data in the _users collection.

If coordinators and database servers are run with authentication turned off, (e.g. by

setting the --server.disable-authentication option to true), the cluster-internal
communication will also be unauthenticated. Password

	--cluster.password	password	

The password used for authorization of cluster-internal requests. This password will be
used to authenticate all requests and responses in cluster-internal communication, i.e.
requests exchanged between coordinators and individual database servers.

This option is used for cluster-internal requests only. Regular requests to coordinators
are authenticated normally using the data in the 	_users	 collection.

If coordinators and database servers are run with authentication turned off, (e.g. by
setting the --server.disable-authentication option to true), the cluster-internal
communication will also be unauthenticated.

There are two different kinds of logs. Human-readable logs and machine-readable logs.
The human-readable logs are used to provide an administration with information about
the server. The machine-readable logs are used to provide statistics about executed
requests and timings about computation steps.

Logfile

	--log.file	filename	

This option allows the user to specify the name of a file to which information is logged. By
default, if no log file is specified, the standard output is used. Note that if the file named
by filename does not exist, it will be created. If the file cannot be created (e.g. due to
missing file privileges), the server will refuse to start. If the specified file already exists,
output is appended to that file.

Use + to log to standard error. Use - to log to standard output. Use "" to disable logging to
file. Request

	--log.requests-file	filename	

This option allows the user to specify the name of a file to which requests are logged. By
default, no log file is used and requests are not logged. Note that if the file named by
filename does not exist, it will be created. If the file cannot be created (e.g. due to missing
file privileges), the server will refuse to start. If the specified file already exists, output is
appended to that file.

Use + to log to standard error. Use - to log to standard output. Use "" to disable request
logging altogether. Severity

	--log.severity	severity	

This parameter provides a set of standard log severities which can be used. The currently
accepted severities are:

exception
technical

Command-Line Options for Logging

General Logging Options

functional
development
human
all (human and non-human)
non-human (exception, technical, functional, and development)

The default is all. Syslog

	--log.syslog	arg	

If this option is set, then in addition to output being directed to the standard output (or to a
specified file, in the case that the command line log.file option was set), log output is also
sent to the system logging facility. The arg is the system log facility to use. See syslog for
further details.

The value of arg depends on your syslog configuration. In general it will be user. Fatal
messages are mapped to crit, so if arg is user, these messages will be logged as
user.crit. Error messages are mapped to err. Warnings are mapped to warn. Info
messages are mapped to notice. Debug messages are mapped to info. Trace messages
are mapped to debug.

Level

	--log.level	level	

	--log	level	

Allows the user to choose the level of information which is logged by the server. The
argument level is specified as a string and can be one of the values listed below. Note
that, fatal errors, that is, errors which cause the server to terminate, are always logged
irrespective of the log level assigned by the user. The variant c log.level can be used in
configuration files, the variant c log for command line options.

fatal: Logs errors which cause the server to terminate.

Fatal errors generally indicate some inconsistency with the manner in which the server
has been coded. Fatal errors may also indicate a problem with the platform on which the
server is running. Fatal errors always cause the server to terminate. For example,

Human Readable Logging

2010-09-20T07:32:12Z	[4742]	FATAL	a	http	server	has	already	been	created

error: Logs errors which the server has encountered.

These errors may not necessarily result in the termination of the server. For example,

2010-09-17T13:10:22Z	[13967]	ERROR	strange	log	level	'errors'\,	going	to	'warning'

warning: Provides information on errors encountered by the server, which are not
necessarily detrimental to it's continued operation.

For example,

2010-09-20T08:15:26Z	[5533]	WARNING	got	corrupted	HTTP	request	'POS?'

Note: The setting the log level to warning will also result in all errors to be logged as well.

info: Logs information about the status of the server.

For example,

2010-09-20T07:40:38Z	[4998]	INFO	SimpleVOC	ready	for	business

Note: The setting the log level to info will also result in all errors and warnings to be
logged as well.

debug: Logs all errors, all warnings and debug information.

Debug log information is generally useful to find out the state of the server in the case of
an error. For example,

2010-09-17T13:02:53Z	[13783]	DEBUG	opened	port	7000	for	any

Note: The setting the log level to debug will also result in all errors, warnings and server
status information to be logged as well.

trace: As the name suggests, logs information which may be useful to trace problems
encountered with using the server.

For example,

2010-09-20T08:23:12Z	[5687]	TRACE	trying	to	open	port	8000

Note: The setting the log level to trace will also result in all errors, warnings, status
information, and debug information to be logged as well. Line number

	--log.line-number	

Normally, if an human readable fatal, error, warning or info message is logged, no
information about the file and line number is provided. The file and line number is only
logged for debug and trace message. This option can be use to always log these pieces
of information. Prefix

	--log.prefix	prefix	

This option is used specify an prefix to logged text. Thread

	--log.thread	

Whenever log output is generated, the process ID is written as part of the log information.
Setting this option appends the thread id of the calling thread to the process id. For
example,

2010-09-20T13:04:01Z	[19355]	INFO	ready	for	business

when no thread is logged and

2010-09-20T13:04:17Z	[19371-18446744072487317056]	ready	for	business

when this command line option is set. Source Filter

	--log.source-filter	arg	

For debug and trace messages, only log those messages originated from the C source
file arg. The argument can be used multiple times. Content Filter

	--log.content-filter	arg	

Only log message containing the specified string arg.

Application

	--log.application	name	

Specifies the name of the application which should be logged if this item of information is
to be logged. Facility

	--log.facility	name	

Specifies the name of the server instance which should be logged if this item of
information is to be logged. Histname

	--log.hostname	name	

Specifies the name of the operating environment (the "hostname") which should be
logged if this item of information is to be logged. Note that there is no default hostname.

Machine Readable Logging

Scheduler threads

	--scheduler.threads	arg	

An integer argument which sets the number of threads to use in the IO scheduler. The
default is 1. Scheduler maximal queue size

	--server.disable-authentication-unix-sockets	value	

Setting value to true will turn off authentication on the server side for requests coming in
via UNIX domain sockets. With this flag enabled, clients located on the same host as the
ArangoDB server can use UNIX domain sockets to connect to the server without
authentication. Requests coming in by other means (e.g. TCP/IP) are not affected by this
option.

The default value is false.

Note: this option is only available on platforms that support UNIX domain sockets.
Scheduler backend

	--scheduler.backend	arg	

The I/O method used by the event handler. The default (if this option is not specified) is to
try all recommended backends. This is platform specific. See libev for further details and
the meaning of select, poll and epoll. Io backends 	--show-io-backends	

If this option is specified, then the server will list available backends and exit. This option
is useful only when used in conjunction with the option scheduler.backend. An integer is
returned (which is platform dependent) which indicates available backends on your
platform. See libev for further details and for the meaning of the integer returned. This
describes the allowed integers for scheduler.backend, see here for details.

Command-Line Options for
Communication

Command-Line Options for Random Numbers

	--random.generator	arg	

The argument is an integer (1,2,3 or 4) which sets the manner in which random numbers
are generated. The default method (3) is to use the a non-blocking random (or
pseudorandom) number generator supplied by the operating system.

Specifying an argument of 2, uses a blocking random (or pseudorandom) number
generator. Specifying an argument 1 sets a pseudorandom number generator using an
implication of the Mersenne Twister MT19937 algorithm. Algorithm 4 is a combination of
the blocking random number generator and the Mersenne Twister.

Authentication and Authorization

ArangoDB only provides a very simple authentication interface and no authorization. We
plan to add authorization features in later releases, which will allow the administrator to
restrict access to collections and queries to certain users, given them either read or write
access.

Currently, you can only secure the access to ArangoDB in an all-or-nothing fashion. The
collection _users contains all users and a salted SHA256 hash of their passwords. A user
can be active or inactive. A typical document of this collection is

{	

		"_id"	:	"_users/1172449",	

		"_rev"	:	"1172449",	

		"_key"	:	"1172449",	

		"active"	:	true,	

		"changePassword"	:	false,	

		"user"	:	"root",	

		"password"	:	"1bd5458a8$8b23e2e1a762f75001ab182235b8ab1b8665bc572b0734a042a501b3c34e567a"

}

Command-Line Options for the Authentication and Authorization

	--server.disable-authentication	

Setting value to true will turn off authentication on the server side so all clients can
execute any action without authorization and privilege checks.

The default value is false.

ArangoDB provides basic functionality to add, modify and remove database users
programmatically. The following functionality is provided by the users module and can be
used from inside arangosh and arangod.

Note: This functionality is not available from within the web interface.

Authentication and Authorization

Introduction to User Management

Save

	users.save(user,	passwd,	active,	extra,	changePassword)	

This will create a new ArangoDB user. The username must be specified in user and must
not be empty.

The password must be given as a string, too, but can be left empty if required.

If the active attribute is not specified, it defaults to true. The extra attribute can be used to
save custom data with the user.

If the changePassword attribute is not specified, it defaults to false. The changePassword
attribute can be used to indicate that the user must change has password before logging
in.

This method will fail if either the username or the passwords are not specified or given in
a wrong format, or there already exists a user with the specified name.

The new user account can only be used after the server is either restarted or the server
authentication cache is reloaded.

Note: this function will not work from within the web interface

Examples

arangosh>	require("org/arangodb/users").save("my-user",	"my-secret-password");

Document

	users.document(user)	

Fetches an existing ArangoDB user from the database.

The username must be specified in user.

This method will fail if the user cannot be found in the database.

Note: this function will not work from within the web interface

Replace

	users.replace(user,	passwd,	active,	extra,	changePassword)	

This will look up an existing ArangoDB user and replace its user data.

The username must be specified in user, and a user with the specified name must
already exist in the database.

The password must be given as a string, too, but can be left empty if required.

If the active attribute is not specified, it defaults to true. The extra attribute can be used to
save custom data with the user.

If the changePassword attribute is not specified, it defaults to false. The changePassword
attribute can be used to indicate that the user must change has password before logging
in.

This method will fail if either the username or the passwords are not specified or given in
a wrong format, or if the specified user cannot be found in the database.

Note: this function will not work from within the web interface

Examples

arangosh>	require("org/arangodb/users").replace("my-user",	"my-changed-password");

Update

	users.update(user,	passwd,	active,	extra,	changePassword)	

This will update an existing ArangoDB user with a new password and other data.

The username must be specified in user and the user must already exist in the database.

The password must be given as a string, too, but can be left empty if required.

If the active attribute is not specified, the current value saved for the user will not be
changed. The same is true for the extra and the changePassword attribute.

This method will fail if either the username or the passwords are not specified or given in
a wrong format, or if the specified user cannot be found in the database.

Note: this function will not work from within the web interface

Examples

arangosh>	require("org/arangodb/users").update("my-user",	"my-secret-password");

Remove

	users.remove(user)	

Removes an existing ArangoDB user from the database.

The username must be specified in User and the specified user must exist in the
database.

This method will fail if the user cannot be found in the database.

Note: this function will not work from within the web interface

Examples

arangosh>	require("org/arangodb/users").remove("my-user");

Reload

	users.reload()	

Reloads the user authentication data on the server

All user authentication data is loaded by the server once on startup only and is cached
after that. When users get added or deleted, a cache flush is required, and this can be
performed by called this method.

Note: this function will not work from within the web interface

isValid

	users.isvalid(user,	password)	

Checks whether the given combination of username and password is valid. The function
will return a boolean value if the combination of username and password is valid.

Each call to this function is penalized by the server sleeping a random amount of time.

Note: this function will not work from within the web interface

all()

	users.all()	

Fetches all existing ArangoDB users from the database.

In Case Of Disaster

The following command starts a emergency console.

Note: Never start the emergency console for a database which also has a server
attached to it. In general the ArangoDB shell is what you want.

>	./arangod	--console	--log	error	/tmp/vocbase

ArangoDB	shell	[V8	version	3.9.4,	DB	version	1.x.y]

arango>	1	+	2;

3

arango>	db.geo.count();

703

The emergency console disables the HTTP interface of the server and opens a
JavaScript console on standard output instead. This allows you to debug and examine
collections and documents without interference from the outside. In most respects the
emergency console behaves like the normal ArangoDB shell - but with exclusive access
and no client/server communication.

However, it is very likely that you never need the emergency console unless you are an
ArangoDB developer.

Emergency Console

This manual describes the ArangoDB importer arangoimp, which can be used for bulk
imports.

The most convenient method to import a lot of data into ArangoDB is to use the
arangoimp command-line tool. It allows you to import data records from a file into an
existing database collection.

It is possible to import document keys with the documents using the _key attribute. When
importing into an edge collection, it is mandatory that all imported documents have the
_from and _to attributes, and that they contain valid references.

Let's assume for the following examples you want to import user records into an existing
collection named "users" on the server.

Importing JSON-encoded Data

Let's further assume the import at hand is encoded in JSON. We'll be using these
example user records to import:

{	"name"	:	{	"first"	:	"John",	"last"	:	"Connor"	},	"active"	:	true,	"age"	:	25,	"likes"

{	"name"	:	{	"first"	:	"Jim",	"last"	:	"O'Brady"	},	"age"	:	19,	"likes"	:	["hiking",	

{	"name"	:	{	"first"	:	"Lisa",	"last"	:	"Jones"	},	"dob"	:	"1981-04-09",	"likes"	:	["running"

To import these records, all you need to do is to put them into a file (with one line for
each record to import) and run the following command:

unix>	arangoimp	--file	"data.json"	--type	json	--collection	"users"

This will transfer the data to the server, import the records, and print a status summary.
To show the intermediate progress during the import process, the option --progress can
be added. This option will show the percentage of the input file that has been sent to the
server. This will only be useful for big import files.

Arangoimp

Importing Data into an ArangoDB Database

unix>	arangoimp	--file	"data.json"	--type	json	--collection	"users"	--progress	true

By default, the endpoint tcp://127.0.0.1:8529 will be used. If you want to specify a
different endpoint, you can use the --server.endpoint option. You probably want to specify
a database user and password as well. You can do so by using the options --
server.username and --server.password. If you do not specify a password, you will be
prompted for one.

unix>	arangoimp	--server.endpoint	tcp://127.0.0.1:8529	--server.username	root	--file	"data.json"	--type	json	--collection	"users"

Note that the collection (users in this case) must already exist or the import will fail. If you
want to create a new collection with the import data, you need to specify the --create-
collection option. Note that it is only possible to create a document collection using the --
create-collection flag, and no edge collections.

unix>	arangoimp	--file	"data.json"	--type	json	--collection	"users"	--create-collection	true

When importing data into an existing collection it is often convenient to first remove all
data from the collection and then start the import. This can be achieved by passing the --
overwrite parameter to arangoimp. If it is set to true, any existing data in the collection will
be removed prior to the import. Note that any existing index definitions for the collection
will be preserved even if --overwrite is set to true.

unix>	arangoimp	--file	"data.json"	--type	json	--collection	"users"	--overwrite	true

As the import file already contains the data in JSON format, attribute names and data
types are fully preserved. As can be seen in the example data, there is no need for all
data records to have the same attribute names or types. Records can be in-homogenous.

Please note that by default, arangoimp will import data into the specified collection in the
default database (_system). To specify a different database, use the --server.database
option when invoking arangoimp.

An arangoimp import run will print out the final results on the command line. By default, it
shows the number of documents created, the number of errors that occurred on the
server side, and the total number of input file lines/documents that it processed.
Additionally, arangoimp will print out details about errors that happened on the server-
side (if any).

Examples

created:										2

errors:											0

total:												2

Note: arangoimp supports two formats when importing JSON data from a file. The first
format requires the input file to contain one JSON document in each line, e.g.

{	"_key":	"one",	"value":	1	}

{	"_key":	"two",	"value":	2	}

{	"_key":	"foo",	"value":	"bar"	}

...

The above format can be imported sequentially by arangoimp. It will read data from the
input file in chunks and send it in batches to the server. Each batch will be about as big
as specified in the command-line parameter --batch-size.

An alternative is to put one big JSON document into the input file like this:

[

		{	"_key":	"one",	"value":	1	},

		{	"_key":	"two",	"value":	2	},

		{	"_key":	"foo",	"value":	"bar"	},

		...

]

This format allows line breaks within the input file as required. The downside is that the
whole input file will need to be read by arangoimp before it can send the first batch. This
might be a problem if the input file is big. By default, arangoimp will allow importing such
files up to a size of about 16 MB.

If you want to allow your arangoimp instance to use more memory, you may want to
increase the maximum file size by specifying the command-line option --batch-size. For
example, to set the batch size to 32 MB, use the following command:

unix>	arangoimp	--file	"data.json"	--type	json	--collection	"users"	--batch-size	33554432

Please also note that you may need to increase the value of --batch-size if a single
document inside the input file is bigger than the value of --batch-size.

!SUBSECTION Importing CSV Data

arangoimp also offers the possibility to import data from CSV files. This comes handy
when the data at hand is in CSV format already and you don't want to spend time
converting them to JSON for the import.

To import data from a CSV file, make sure your file contains the attribute names in the
first row. All the following lines in the file will be interpreted as data records and will be
imported.

The CSV import requires the data to have a homogeneous structure. All records must
have exactly the same amount of columns as there are headers.

The cell values can have different data types though. If a cell does not have any value, it
can be left empty in the file. These values will not be imported so the attributes will not
"be there" in document created. Values enclosed in quotes will be imported as strings, so
to import numeric values, boolean values or the null value, don't enclose the value into
the quotes in your file.

We'll be using the following import for the CSV import:

"first","name","age","active","dob"

"John","Connor",25,true,

"Jim","O'Brady",19,,

"Lisa","Jones",,,"1981-04-09"

Hans,dos	Santos,0123,,

Wayne,Brewer,,false,

The command line to execute the import then is:

unix>	arangoimp	--file	"data.csv"	--type	csv	--collection	"users"

The above data will be imported into 5 documents which will look as follows:

{	"first"	:	"John",	"last"	:	"Connor",	"active"	:	true,	"age"	:	25	}	

{	"first"	:	"Jim",	"last"	:	"O'Brady",	"age"	:	19	}

{	"first"	:	"Lisa",	"last"	:	"Jones",	"dob"	:	"1981-04-09"	}	

{	"first"	:	"Hans",	"last"	:	"dos	Santos",	"age"	:	123	}	

{	"first"	:	"Wayne",	"last"	:	"Brewer",	"active"	:	false	}

As can be seen, values left completely empty in the input file will be treated as absent.
Numeric values not enclosed in quotes will be treated as numbers. Note that leading
zeros in numeric values will be removed. To import numbers with leading zeros, please
use strings. The literals true and false will be treated as booleans if they are not enclosed
in quotes. Other values not enclosed in quotes will be treated as strings. Any values
enclosed in quotes will be treated as strings, too.

String values containing the quote character or the separator must be enclosed with
quote characters. Within a string, the quote character itself must be escaped with another
quote character (or with a backslash if the --backslash-escape option is used).

Note that the quote and separator characters can be adjusted via the --quote and --
separator arguments when invoking arangoimp. The importer supports Windows (CRLF)
and Unix (LF) line breaks.

!SUBSECTION Importing TSV Data

You may also import tab-separated values (TSV) from a file. This format is very simple:
every line in the file represents a data record. There is no quoting or escaping. That also
means that the separator character (which defaults to the tabstop symbol) must not be
used anywhere in the actual data.

As with CSV, the first line in the TSV file must contain the attribute names, and all lines
must have an identical number of values.

If a different separator character or string should be used, it can be specified with the --
separator argument.

An example command line to execute the TSV import is:

unix>	arangoimp	--file	"data.tsv"	--type	tsv	--collection	"users"	

!SUBSECTION Importing into an Edge Collection

arangoimp can also be used to import data into an existing edge collection. The import

data must, for each edge to import, contain at least the _from and _to attributes. These
indicate which other two documents the edge should connect. It is necessary that these
attributes are set for all records, and point to valid document ids in existing collections.

Examples

{	"_from"	:	"users/1234",	"_to"	:	"users/4321",	"desc"	:	"1234	is	connected	to	4321"	}

Note: The edge collection must already exist when the import is started. Using the --
create-collection flag will not work because arangoimp will always try to create a regular
document collection if the target collection does not exist.

!SUBSECTION Attribute Naming and Special Attributes

Attributes whose names start with an underscore are treated in a special way by
ArangoDB:

the optional _key attribute contains the document's key. If specified, the value must
be formally valid (e.g. must be a string and conform to the naming conventions).
Additionally, the key value must be unique within the collection the import is run for.
_from: when importing into an edge collection, this attribute contains the id of one of
the documents connected by the edge. The value of _from must be a syntactically
valid document id and the referred collection must exist.
_to: when importing into an edge collection, this attribute contains the id of the other
document connected by the edge. The value of _to must be a syntactically valid
document id and the referred collection must exist.
_rev: this attribute contains the revision number of a document. However, the
revision numbers are managed by ArangoDB and cannot be specified on import.
Thus any value in this attribute is ignored on import.

If you import values into _key, you should make sure they are valid and unique.

When importing data into an edge collection, you should make sure that all import
documents can _from and _to and that their values point to existing documents.

To dump data from an ArangoDB server instance, you will need to invoke arangodump. It
can be invoked by executing the following command:

unix>	arangodump	--output-directory	"dump"

This will connect to an ArangoDB server and dump all non-system collections from the
default database (_system) into an output directory named dump. Invoking arangodump
will fail if the output directory already exists. This is an intentional security measure to
prevent you from accidentally overwriting already dumped data. If you are positive that
you want to overwrite data in the output directory, you can use the parameter --overwrite
true to confirm this:

unix>	arangodump	--output-directory	"dump"	--overwrite	true

arangodump will by default connect to the _system database using the default endpoint.
If you want to connect to a different database or a different endpoint, or use
authentication, you can use the following command-line options:

--server.database : name of the database to connect to
--server.endpoint : endpoint to connect to
--server.username : username
--server.password : password to use (omit this and you'll be prompted for the
password)
--server.disable-authentication : whether or not to use authentication

Here's an example of dumping data from a non-standard endpoint, using a dedicated
database name:

unix>	arangodump	--server.endpoint	tcp://192.168.173.13:8531	--server.username	backup	--server.database	mydb	--output-directory	"dump"

When finished, arangodump will print out a summary line with some aggregate statistics

Dumping Data from an ArangoDB
database

about what it did, e.g.:

Processed	43	collection(s),	wrote	408173500	byte(s)	into	datafiles,	sent	88	batch(es)

By default, arangodump will dump both structural information and documents from all
non-system collections. To adjust this, there are the following command-line arguments:

--dump-data : set to true to include documents in the dump. Set to false to exclude
documents. The default value is true.
--include-system-collections : whether or not to include system collections in the
dump. The default value is false.

For example, to only dump structural information of all collections (including system
collections), use:

unix>	arangodump	--dump-data	false	--include-system-collections	true	--output-directory	"dump"

To restrict the dump to just specific collections, there is is the --collection option. It can be
specified multiple times if required:

unix>	arangodump	--collection	myusers	--collection	myvalues	--output-directory	"dump"

Structural information for a collection will be saved in files with name pattern
.structure.json. Each structure file will contains a JSON object with these attributes:

parameters: contains the collection properties
indexes: contains the collection indexes

Document data for a collection will be saved in files with name pattern .data.json. Each
line in a data file is a document insertion/update or deletion marker, alongside with some
meta data.

Starting with Version 2.1 of ArangoDB, the arangodump tool also supports sharding.
Simply point it to one of the coordinators and it will behave exactly as described above,
working on sharded collections in the cluster.

However, as opposed to the single instance situation, this operation does not lock the
data in the cluster and can therefore not guarantee to dump a consistent snapshot if
writing operations happen during the dump operation! That is, it is recommended not to
perform any data modifying operations on the cluster whilst arangodump is running.

As above, the output will be one structure description file and one data file per sharded
collection. Note that the data in the data file is sorted first by shards and within each
shard by ascending timestamp. The structural information of the collection contains the
number of shards and the shard keys.

To reload data from a dump previously created with arangodump, ArangoDB provides the
arangorestore tool.

Invoking arangorestore

arangorestore can be invoked from the command-line as follows:

unix>	arangorestore	--input-directory	"dump"

This will connect to an ArangoDB server and reload structural information and documents
found in the input directory dump. Please note that the input directory must have been
created by running arangodump before.

arangorestore will by default connect to the _system database using the default endpoint.
If you want to connect to a different database or a different endpoint, or use
authentication, you can use the following command-line options:

--server.database : name of the database to connect to
--server.endpoint : endpoint to connect to
--server.username : username
--server.password : password to use (omit this and you'll be prompted for the
password)
--server.disable-authentication : whether or not to use authentication

Here's an example of reloading data to a non-standard endpoint, using a dedicated
database name:

unix>	arangorestore	--server.endpoint	tcp://192.168.173.13:8531	--server.username	backup	--server.database	mydb	--input-directory	"dump"

arangorestore will print out its progress while running, and will end with a line showing
some aggregate statistics:

Arangorestore

Reloading Data into an ArangoDB database

Processed	2	collection(s),	read	2256	byte(s)	from	datafiles,	sent	2	batch(es)

By default, arangorestore will re-create all non-system collections found in the input
directory and load data into them. If the target database already contains collections
which are also present in the input directory, the existing collections in the database will
be dropped and re-created with the data found in the input directory.

The following parameters are available to adjust this behavior:

--create-collection : set to true to create collections in the target database. If the
target database already contains a collection with the same name, it will be dropped
first and then re-created with the properties found in the input directory. Set to false
to keep existing collections in the target database. If set to false and arangorestore
encounters a collection that is present in both the target database and the input
directory, it will abort. The default value is true.
--import-data : set to true to load document data into the collections in the target
database. Set to false to not load any document data. The default value is true.
--include-system-collections : whether or not to include system collections when re-
creating collections or reloading data. The default value is false.

For example, to (re-)create all non-system collections and load document data into them,
use:

unix>	arangorestore	--create-collection	true	--import-data	true	--input-directory	"dump"

This will drop potentially existing collections in the target database that are also present
in the input directory.

To include system collections too, use --include-system-collections true:

unix>	arangorestore	--create-collection	true	--import-data	true	--include-system-collections	true	--input-directory	"dump"

To (re-)create all non-system collections without loading document data, use:

unix>	arangorestore	--create-collection	true	--import-data	false	--input-directory	"dump"

This will also drop existing collections in the target database that are also present in the
input directory.

To just load document data into all non-system collections, use:

unix>	arangorestore	--create-collection	false	--import-data	true	--input-directory	"dump"

To restrict reloading to just specific collections, there is is the --collection option. It can be
specified multiple times if required:

unix>	arangorestore	--collection	myusers	--collection	myvalues	--input-directory	"dump"

Collections will be processed by in alphabetical order by arangorestore, with all document
collections being processed before all edge collections. This is to ensure that reloading
data into edge collections will have the document collections linked in edges (_from and
_to attributes) loaded.

Restoring Revision Ids and Collection Ids

arangorestore will reload document and edges data with the exact same _key, _from and
_to values found in the input directory. However, when loading document data, it will
assign its own values for the _rev attribute of the reloaded documents. Though this
difference is intentional (normally, every server should create its own _rev values) there
might be situations when it is required to re-use the exact same _rev values for the
reloaded data. This can be achieved by setting the --recycle-ids parameter to true:

unix>	arangorestore	--collection	myusers	--collection	myvalues	--recycle-ids	true	--input-directory	"dump"

Note that setting --recycle-ids to true will also cause collections to be (re-)created in the
target database with the exact same collection id as in the input directory. Any potentially
existing collection in the target database with the same collection id will then be dropped.

Setting --recycle-ids to false or omitting it will only use the collection name from the input

directory and allow the target database to create the collection with a different id (though
with the same name) than in the input directory.

Reloading Data into a different Collection

With some creativity you can use arangodump and arangorestore to transfer data from
one collection into another (either on the same server or not). For example, to copy data
from a collection myvalues in database mydb into a collection mycopyvalues in database
mycopy, you can start with the following command:

unix>	arangodump	--collection	myvalues	--server.database	mydb	--output-directory	"dump"

This will create two files, myvalues.structure.json and myvalues.data.json, in the output
directory. To load data from the datafile into an existing collection mycopyvalues in
database mycopy, rename the files to mycopyvalues.structure.json and
mycopyvalues.data.json. After that, run the following command:

unix>	arangorestore	--collection	mycopyvalues	--server.database	mycopy	--input-directory	"dump"

Using arangorestore with sharding

As of Version 2.1 the arangorestore tool supports sharding. Simply point it to one of the
coordinators in your cluster and it will work as usual but on sharded collections in the
cluster.

If arangorestore is asked to drop and re-create a collection, it will use the same number
of shards and the same shard keys as when the collection was dumped. The distribution
of the shards to the servers will also be the same as at the time of the dump. This means
in particular that DBservers with the same IDs as before must be present in the cluster at
time of the restore.

If a collection was dumped from a single instance, one can manually add the structural
description for the shard keys and the number and distribution of the shards and then the
restore into a cluster will work.

If you restore a collection that was dumped from a cluster into a single ArangoDB
instance, the number of shards and the shard keys will silently be ignored.

Note that in a cluster, every newly created collection will have a new ID, it is not possible
to reuse the ID from the originally dumped collection. This is for safety reasons to ensure
consistency of IDs.

Following you have ArangoDB's Http Interface for Documents, Databases, Edges and
more.

There are also some examples provided for every API action.

Http Interface

Address of a Database

Any operation triggered via ArangoDB's HTTP REST API is executed in the context of
exactly one database. To explicitly specify the database in a request, the request URI
must contain the database name in front of the actual path:

http://localhost:8529/_db/mydb/...

where ... is the actual path to the accessed resource. In the example, the resource will be
accessed in the context of the database mydb. Actual URLs in the context of mydb could
look like this:

http://localhost:8529/_db/mydb/_api/version

http://localhost:8529/_db/mydb/_api/document/test/12345

http://localhost:8529/_db/mydb/myapp/get

HTTP Interface for Databases

If a database name is present in the URI as above, ArangoDB will consult the database-
to-endpoint mapping for the current endpoint, and validate if access to the database is
allowed on the endpoint. If the endpoint is not restricted to a list of databases, ArangoDB
will continue with the regular authentication procedure. If the endpoint is restricted to a list
of specified databases, ArangoDB will check if the requested database is in the list. If not,
the request will be turned down instantly. If yes, then ArangoDB will continue with the
regular authentication procedure.

If the request URI was http:// localhost:8529/_db/mydb/..., then the request to mydb will
be allowed (or disallowed) in the following situations:

Endpoint-to-database	mapping											Access	to	*mydb*	allowed?

----------------------------											-------------------------

[]																																				yes

["_system"]																										no	

["_system",	"mydb"]																		yes

["mydb"]																													yes

["mydb",	"_system"]																		yes

["test1",	"test2"]																			no

In case no database name is specified in the request URI, ArangoDB will derive the
database name from the endpoint-to-database mapping of the endpoint the connection
was coming in on.

If the endpoint is not restricted to a list of databases, ArangoDB will assume the _system
database. If the endpoint is restricted to one or multiple databases, ArangoDB will
assume the first name from the list.

Following is an overview of which database name will be assumed for different endpoint-
to-database mappings in case no database name is specified in the URI:

Endpoint-to-database	mapping											Database

----------------------------											--------

[]																																				_system

["_system"]																										_system

["_system",	"mydb"]																		_system

["mydb"]																													mydb

["mydb",	"_system"]																		mydb

Database-to-Endpoint Mapping

This is an introduction to ArangoDB's Http interface for managing databases.

The HTTP interface for databases provides operations to create and drop individual
databases. These are mapped to the standard HTTP methods POST and DELETE.
There is also the GET method to retrieve a list of existing databases.

Please note that all database management operations can only be accessed via the
default database (_system) and none of the other databases.

retrieves information about the current database

Information of the database 	GET	/_api/database/current	

Retrieves information about the current database

The response is a JSON object with the following attributes:

name: the name of the current database

id: the id of the current database

path: the filesystem path of the current database

isSystem: whether or not the current database is the _system database

Return Codes

200: is returned if the information was retrieved successfully.

400: is returned if the request is invalid.

404: is returned if the database could not be found.

Examples

Database Management

Managing Databases using HTTP

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/database/current

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
retrieves a list of all databases the current user can access

List of accessible databases 	GET	/_api/database/user	

Retrieves the list of all databases the current user can access without specifying a
different username or password.

Return Codes

200: is returned if the list of database was compiled successfully.

400: is returned if the request is invalid.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/database/user

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
retrieves a list of all existing databases

List of databases 	GET	/_api/database	

Retrieves the list of all existing databases

Note: retrieving the list of databases is only possible from within the _system database.

Return Codes

200: is returned if the list of database was compiled successfully.

400: is returned if the request is invalid.

403: is returned if the request was not executed in the _system database.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/database

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
creates a new database

Create database 	POST	/_api/database	

body: the body with the name of the database.

Creates a new database

The request body must be a JSON object with the attribute name. name must contain a
valid database name.

The request body can optionally contain an attribute users, which then must be a list of
user objects to initially create for the new database. Each user object can contain the
following attributes:

username: the user name as a string. This attribute is mandatory.

passwd: the user password as a string. If not specified, then it defaults to the empty
string.

active: a boolean flag indicating whether the user accout should be actived or not.
The default value is true.

extra: an optional JSON object with extra user information. The data contained in
extra will be stored for the user but not be interpreted further by ArangoDB.

If users is not specified or does not contain any users, a default user root will be created
with an empty string password. This ensures that the new database will be accessible
after it is created.

The response is a JSON object with the attribute result set to true.

Note: creating a new database is only possible from within the _system database.

Return Codes

201: is returned if the database was created successfully.

400: is returned if the request parameters are invalid or if a database with the
specified name already exists.

403: is returned if the request was not executed in the _system database.

409: is returned if a database with the specified name already exists.

Examples

Creating a database named example.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/database

{"name":"example"}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
Creating a database named mydb with two users.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/database

{"name":"mydb","users":[{"username":"admin","passwd":"secret","active":true},{"username":"tester","passwd":"test001","active":false}]}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
drop an existing database

Drop database 	DELETE	/_api/database/{database-name}	

database-name: The name of the database

Deletes the database along with all data stored in it.

Note: dropping a database is only possible from within the _system database. The
_system database itself cannot be dropped.

Return Codes

200: is returned if the database was dropped successfully.

400: is returned if the request is malformed.

403: is returned if the request was not executed in the _system database.

404: is returned if the database could not be found.

Examples

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/database/example

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body

Please keep in mind that each database contains its own system collections, which need
to set up when a database is created. This will make the creation of a database take a
while. Replication is configured on a per-database level, meaning that any replication
logging or applying for the a new database must be configured explicitly after a new
database has been created. Foxx applications are also available only in the context of the
database they have been installed in. A new database will only provide access to the
system applications shipped with ArangoDB (that is the web interface at the moment) and
no other Foxx applications until they are explicitly installed for the particular database.

Database

ArangoDB can handle multiple databases in the same server instance. Databases can be
used to logically group and separate data. An ArangoDB database consists of collections
and dedicated database-specific worker processes. A database contains its own
collections (which cannot be accessed from other databases), Foxx applications and
replication loggers and appliers. Each ArangoDB database contains its own system
collections (e.g. _users, _graphs, ...).

There will always be at least one database in ArangoDB. This is the default database
named _system. This database cannot be dropped and provides special operations for
creating, dropping and enumerating databases. Users can create additional databases
and give them unique names to access them later. Database management operations
cannot be initiated from out of user-defined databases.

When ArangoDB is accessed via its HTTP REST API, the database name is read from
the first part of the request URI path (e.g. /_db/_system/...). If the request URI does not
contain a database name, the database name is automatically determined by the
algorithm described in Database-to-Endpoint Mapping .

Database Name

A single ArangoDB instance can handle multiple databases in parallel. When multiple
databases are used, each database must be given an unique name. This name is used
to uniquely identify a database. The default database in ArangoDB is named system. The
database name is a string consisting of only letters, digits and the (underscore) and -
(dash) characters. User-defined database names must always start with a letter.
Database names are case-sensitive.

Notes on Databases

Database Organization

A single ArangoDB instance can handle multiple databases in parallel. By default, there
will be at least one database which is named _system. Databases are physically stored in
separate sub-directories underneath the database directory, which itself resides in the
instance's data directory.

Each database has its own sub-directory, named database-. The database directory
contains sub-directories for the collections of the database, and a file named
parameter.json. This file contains the database id and name.

In an example ArangoDB instance which has two databases, the filesystem layout could
look like this:

data/																					#	the	instance's	data	directory

		databases/														#	sub-directory	containing	all	databases'	data

				database-<id>/								#	sub-directory	for	a	single	database

						parameter.json						#	file	containing	database	id	and	name

						collection-<id>/				#	directory	containing	data	about	a	collection

				database-<id>/								#	sub-directory	for	another	database

						parameter.json						#	file	containing	database	id	and	name

						collection-<id>/				#	directory	containing	data	about	a	collection

						collection-<id>/				#	directory	containing	data	about	a	collection

Foxx applications are also organized in database-specific directories inside the
application path. The filesystem layout could look like this:

apps/																			#	the	instance's	application	directory

		system/															#	system	applications	(can	be	ignored)

		databases/												#	sub-directory	containing	database-specific	applications

				<database-name>/				#	sub-directory	for	a	single	database

						<app-name>								#	sub-directory	for	a	single	application

						<app-name>								#	sub-directory	for	a	single	application

				<database-name>/				#	sub-directory	for	another	database

						<app-name>								#	sub-directory	for	a	single	application

`

Documents, Identifiers, Handles

This is an introduction to ArangoDB's REST interface for documents.

Documents in ArangoDB are JSON objects. These objects can be nested (to any depth)
and may contain lists. Each document is uniquely identified by its document handle.

An example document:

{

		"_id"	:	"myusers/2345678",

		"_key"	:	"3456789",

		"_rev"	:	"3456789",

		"firstName"	:	"Hugo",

		"lastName"	:	"Schlonz",

		"address"	:	{

				"street"	:	"Street	of	Happiness",

				"city"	:	"Heretown"

		},

		"hobbies"	:	[

				"swimming",

				"biking",

				"programming"

]

}

All documents contain special attributes: the document handle in _id, the document's
unique key in _key and and the etag aka document revision in _rev. The value of the
_key attribute can be specified by the user when creating a document. _id and _key
values are immutable once the document has been created. The _rev value is
maintained by ArangoDB autonomously.

Document Handle

A document handle uniquely identifies a document in the database. It is a string and
consists of the collection's name and the document key (_key attribute) separated by /.

Document Key

A document key uniquely identifies a document in a given collection. It can and should be
used by clients when specific documents are searched. Document keys are stored in the

HTTP Interface for Documents

_key attribute of documents. The key values are automatically indexed by ArangoDB in a
collection's primary index. Thus looking up a document by its key is regularly a fast
operation. The _key value of a document is immutable once the document has been
created. By default, ArangoDB will auto-generate a document key if no _key attribute is
specified, and use the user-specified _key otherwise.

This behavior can be changed on a per-collection level by creating collections with the
keyOptions attribute.

Using keyOptions it is possible to disallow user-specified keys completely, or to force a
specific regime for auto-generating the _key values.

Document Revision

As ArangoDB supports MVCC, documents can exist in more than one revision. The
document revision is the MVCC token used to identify a particular revision of a document.
It is a string value currently containing an integer number and is unique within the list of
document revisions for a single document. Document revisions can be used to
conditionally update, replace or delete documents in the database. In order to find a
particular revision of a document, you need the document handle and the document
revision. ArangoDB currently uses 64bit unsigned integer values to maintain document
revisions internally. When returning document revisions to clients, ArangoDB will put
them into a string to ensure the revision id is not clipped by clients that do not support big
integers. Clients should treat the revision id returned by ArangoDB as an opaque string
when they store or use it locally. This will allow ArangoDB to change the format of
revision ids later if this should be required. Clients can use revisions ids to perform simple
equality/non-equality comparisons (e.g. to check whether a document has changed or
not), but they should not use revision ids to perform greater/less than comparisons with
them to check if a document revision is older than one another, even if this might work for
some cases.

Note: Revision ids have been returned as integers up to including ArangoDB 1.1

Document Etag

The document revision enclosed in double quotes. The revision is returned by several
HTTP API methods in the Etag HTTP header.

The basic operations (create, read, update, delete) for documents are mapped to the
standard HTTP methods (POST, GET, PUT, DELETE). There is also a partial update
method, which is mapped to the HTTP PATCH method.

An identifier for the document revision is returned in the ETag HTTP header. If you
modify a document, you can use the If-Match field to detect conflicts. The revision of a
document can be checking using the HTTP method HEAD.

All documents in ArangoDB have a document handle. This handle uniquely identifies a
document. Any document can be retrieved using its unique URI:

http://server:port/_api/document/<document-handle>

For example, assumed that the document handle, which is stored in the _id attribute of
the document, is demo/362549736, then the URL of that document is:

http://localhost:8529/_api/document/demo/362549736

The above URL scheme does not specify a database name explicitly, so the default
database will be used. To explicitly specify the database context, use the following URL
schema:

http://server:port/_db/<database-name>/_api/document/<document-handle>

Example:

http://localhost:8529/_db/mydb/_api/document/demo/362549736

Note: The following examples use the short URL format for brevity.

Each document also has a document revision or etag with is returned in the "ETag"
HTTP header when requesting a document.

If you obtain a document using GET and you want to check if a newer revision is
available, then you can use the If-None-Match header. If the document is unchanged, a
HTTP 412 (precondition failed) error is returned.

If you want to update or delete a document, then you can use the If-Match header. If the
document has changed, then the operation is aborted and a HTTP 412 error is returned.

Address and ETag of a Document

reads a single document

Read document 	GET	/_api/document/{document-handle}	

document-handle: The handle of the document.

If-None-Match: If the "If-None-Match" header is given, then it must contain exactly
one etag. The document is returned, if it has a different revision than the given etag.
Otherwise an HTTP 304 is returned.

If-Match: If the "If-Match" header is given, then it must contain exactly one etag. The
document is returned, if it has the same revision ad the given etag. Otherwise a
HTTP 412 is returned. As an alternative you can supply the etag in an attribute rev in
the URL.

Returns the document identified by document-handle. The returned document contains
two special attributes: _id containing the document handle and _rev containing the
revision.

Return Codes

200: is returned if the document was found

304: is returned if the "If-None-Match" header is given and the document has the
same version

404: is returned if the document or collection was not found

412: is returned if a "If-Match" header or rev is given and the found document has a
different version. The response will also contain the found document's current
revision in the _rev attribute. Additionally, the attributes _id and _key will be returned.

Examples

Use a document handle:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1381767258

Working with Documents using REST

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

etag:	"1381767258"

show response body
Use a document handle and an etag:

shell>	curl	--header	'If-None-Match:	"1382357082"'	--dump	-	http://localhost:8529/_api/document/products/1382357082

Unknown document handle:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/unknownhandle

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

show response body
creates a document

Create document 	POST	/_api/document	

document: A JSON representation of the document.

collection: The collection name.

createCollection: If this parameter has a value of true or yes, then the collection is
created if it does not yet exist. Other values will be ignored so the collection must be
present for the operation to succeed.

Note: this flag is not supported in a cluster. Using it will result in an error.

waitForSync: Wait until document has been synced to disk.

Creates a new document in the collection named collection. A JSON representation of
the document must be passed as the body of the POST request.

If the document was created successfully, then the "Location" header contains the path to
the newly created document. The "ETag" header field contains the revision of the

document.

The body of the response contains a JSON object with the following attributes:

_id contains the document handle of the newly created document
_key contains the document key
_rev contains the document revision

If the collection parameter waitForSync is false, then the call returns as soon as the
document has been accepted. It will not wait until the document has been synced to disk.

Optionally, the URL parameter waitForSync can be used to force synchronisation of the
document creation operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync URL parameter can be used to
force synchronisation of just this specific operations. To use this, set the waitForSync
parameter to true. If the waitForSync parameter is not specified or set to false, then the
collection's default waitForSync behavior is applied. The waitForSync URL parameter
cannot be used to disable synchronisation for collections that have a default waitForSync
value of true.

Return Codes

201: is returned if the document was created successfully and waitForSync was true.

202: is returned if the document was created successfully and waitForSync was
false.

400: is returned if the body does not contain a valid JSON representation of a
document. The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

Create a document given a collection named products. Note that the revision identifier
might or might not by equal to the auto-generated key.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/document?collection=products

{	"Hello":	"World"	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

etag:	"1379473498"

location:	/_db/_system/_api/document/products/1379473498

show response body
Create a document in a collection named products with a collection-level waitForSync
value of false.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/document?collection=products

{	"Hello":	"World"	}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	"1380194394"

location:	/_db/_system/_api/document/products/1380194394

show response body
Create a document in a collection with a collection-level waitForSync value of false, but
using the waitForSync URL parameter.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/document?collection=products&waitForSync=true

{	"Hello":	"World"	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

etag:	"1380718682"

location:	/_db/_system/_api/document/products/1380718682

show response body
Create a document in a new, named collection

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/document?collection=products&createCollection=true

{	"Hello":	"World"	}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	"1381242970"

location:	/_db/_system/_api/document/products/1381242970

show response body

Unknown collection name:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/document?collection=products

{	"Hello":	"World"	}

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

show response body
Illegal document:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/document?collection=products

{	1:	"World"	}

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

show response body
replaces a document

Replace document 	PUT	/_api/document/{document-handle}	

document: A JSON representation of the new document.

document-handle: The handle of the document.

waitForSync: Wait until document has been synced to disk.

rev: You can conditionally replace a document based on a target revision id by using
the rev URL parameter.

policy: To control the update behavior in case there is a revision mismatch, you can
use the policy parameter (see below).

If-Match: You can conditionally replace a document based on a target revision id by
using the if-match HTTP header.

Completely updates (i.e. replaces) the document identified by document-handle. If the
document exists and can be updated, then a HTTP 201 is returned and the "ETag"
header field contains the new revision of the document.

If the new document passed in the body of the request contains the document-handle in
the attribute _id and the revision in _rev, these attributes will be ignored. Only the URI
and the "ETag" header are relevant in order to avoid confusion when using proxies.

Optionally, the URL parameter waitForSync can be used to force synchronisation of the
document replacement operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync URL parameter can be used to
force synchronisation of just specific operations. To use this, set the waitForSync
parameter to true. If the waitForSync parameter is not specified or set to false, then the
collection's default waitForSync behavior is applied. The waitForSync URL parameter
cannot be used to disable synchronisation for collections that have a default waitForSync
value of true.

The body of the response contains a JSON object with the information about the handle
and the revision. The attribute _id contains the known document-handle of the updated
document, the attribute _rev contains the new document revision.

If the document does not exist, then a HTTP 404 is returned and the body of the
response contains an error document.

There are two ways for specifying the targeted document revision id for conditional
replacements (i.e. replacements that will only be executed if the revision id found in the
database matches the document revision id specified in the request):

specifying the target revision in the rev URL query parameter
specifying the target revision in the if-match HTTP header

Specifying a target revision is optional, however, if done, only one of the described
mechanisms must be used (either the rev URL parameter or the if-match HTTP header).
Regardless which mechanism is used, the parameter needs to contain the target
document revision id as returned in the _rev attribute of a document or by an HTTP etag
header.

For example, to conditionally replace a document based on a specific revision id, you can
use the following request:

	PUT	/_api/document/document-handle?rev=etag	

If a target revision id is provided in the request (e.g. via the etag value in the rev URL
query parameter above), ArangoDB will check that the revision id of the document found
in the database is equal to the target revision id provided in the request. If there is a
mismatch between the revision id, then by default a HTTP 412 conflict is returned and no

replacement is performed.

The conditional update behavior can be overriden with the policy URL query parameter:

	PUT	/_api/document/document-handle?policy=policy	

If policy is set to error, then the behavior is as before: replacements will fail if the revision
id found in the database does not match the target revision id specified in the request.

If policy is set to last, then the replacement will succeed, even if the revision id found in
the database does not match the target revision id specified in the request. You can use
the last policy to force replacements.

Return Codes

201: is returned if the document was replaced successfully and waitForSync was
true.

202: is returned if the document was replaced successfully and waitForSync was
false.

400: is returned if the body does not contain a valid JSON representation of a
document. The response body contains an error document in this case.

404: is returned if the collection or the document was not found

412: is returned if a "If-Match" header or rev is given and the found document has a
different version. The response will also contain the found document's current
revision in the _rev attribute. Additionally, the attributes _id and _key will be returned.

Examples

Using document handle:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1386092634

{"Hello":	"you"}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	"1386420314"

location:	/_db/_system/_api/document/products/1386092634

show response body
Unknown document handle:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1386944602

{}

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

show response body
Produce a revision conflict:

shell>	curl	-X	PUT	--header	'If-Match:	"1388189786"'	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1387862106

{"other":"content"}

HTTP/1.1	412	Precondition	Failed

content-type:	application/json;	charset=utf-8

etag:	"1387862106"

show response body
Last write wins:

shell>	curl	-X	PUT	--header	'If-Match:	"1389303898"'	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1388976218?policy=last

{}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	"1389566042"

location:	/_db/_system/_api/document/products/1388976218

show response body
Alternative to header field:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1390090330?rev=1390418010

{"other":"content"}

HTTP/1.1	412	Precondition	Failed

content-type:	application/json;	charset=utf-8

etag:	"1390090330"

show response body
updates a document

Patch document 	PATCH	/_api/document/{document-handle}	

document: A JSON representation of the document update.

document-handle: The handle of the document.

keepNull: If the intention is to delete existing attributes with the patch command, the
URL query parameter keepNull can be used with a value of false. This will modify the
behavior of the patch command to remove any attributes from the existing document
that are contained in the patch document with an attribute value of null.

waitForSync: Wait until document has been synced to disk.

rev: You can conditionally patch a document based on a target revision id by using
the rev URL parameter.

policy: To control the update behavior in case there is a revision mismatch, you can
use the policy parameter.

If-Match: You can conditionally patch a document based on a target revision id by
using the if-match HTTP header.

Partially updates the document identified by document-handle. The body of the request
must contain a JSON document with the attributes to patch (the patch document). All
attributes from the patch document will be added to the existing document if they do not
yet exist, and overwritten in the existing document if they do exist there.

Setting an attribute value to null in the patch document will cause a value of null be saved
for the attribute by default.

Optionally, the URL parameter waitForSync can be used to force synchronisation of the
document update operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync URL parameter can be used to
force synchronisation of just specific operations. To use this, set the waitForSync
parameter to true. If the waitForSync parameter is not specified or set to false, then the
collection's default waitForSync behavior is applied. The waitForSync URL parameter
cannot be used to disable synchronisation for collections that have a default waitForSync
value of true.

The body of the response contains a JSON object with the information about the handle
and the revision. The attribute _id contains the known document-handle of the updated
document, the attribute _rev contains the new document revision.

If the document does not exist, then a HTTP 404 is returned and the body of the
response contains an error document.

You can conditionally update a document based on a target revision id by using either the
rev URL parameter or the if-match HTTP header. To control the update behavior in case
there is a revision mismatch, you can use the policy parameter. This is the same as when
replacing documents (see replacing documents for details).

Return Codes

201: is returned if the document was created successfully and waitForSync was true.

202: is returned if the document was created successfully and waitForSync was
false.

400: is returned if the body does not contain a valid JSON representation of a
document. The response body contains an error document in this case.

404: is returned if the collection or the document was not found

412: is returned if a "If-Match" header or rev is given and the found document has a
different version. The response will also contain the found document's current
revision in the _rev attribute. Additionally, the attributes _id and _key will be returned.

Examples

patches an existing document with new content.

shell>	curl	-X	PATCH	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1391204442

{	

		"hello"	:	"world"	

}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	"1391532122"

location:	/_db/_system/_api/document/products/1391204442

shell>	curl	-X	PATCH	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1391204442

{	

		"numbers"	:	{	

				"one"	:	1,	

				"two"	:	2,	

				"three"	:	3,	

				"empty"	:	null	

		}	

}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	"1392121946"

location:	/_db/_system/_api/document/products/1391204442

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1391204442

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

etag:	"1392121946"

shell>	curl	-X	PATCH	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1391204442?keepNull=false

{	

		"hello"	:	null,	

		"numbers"	:	{	

				"four"	:	4	

		}	

}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	"1392580698"

location:	/_db/_system/_api/document/products/1391204442

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1391204442

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

etag:	"1392580698"

show response body
deletes a document

Deletes document 	DELETE	/_api/document/{document-handle}	

document-handle: Deletes the document identified by document-handle.

rev: You can conditionally delete a document based on a target revision id by using
the rev URL parameter.

policy: To control the update behavior in case there is a revision mismatch, you can
use the policy parameter. This is the same as when replacing documents (see
replacing documents for more details).

waitForSync: Wait until document has been synced to disk.

If-Match: You can conditionally delete a document based on a target revision id by
using the if-match HTTP header.

The body of the response contains a JSON object with the information about the handle
and the revision. The attribute _id contains the known document-handle of the deleted
document, the attribute _rev contains the document revision.

If the waitForSync parameter is not specified or set to false, then the collection's default
waitForSync behavior is applied. The waitForSync URL parameter cannot be used to
disable synchronisation for collections that have a default waitForSync value of true.

Return Codes

200: is returned if the document was deleted successfully and waitForSync was true.

202: is returned if the document was deleted successfully and waitForSync was
false.

404: is returned if the collection or the document was not found. The response body
contains an error document in this case.

412: is returned if a "If-Match" header or rev is given and the found document has a
different version. The response will also contain the found document's current
revision in the _rev attribute. Additionally, the attributes _id and _key will be returned.

Examples

Using document handle:

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1393170522

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Unknown document handle:

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1393891418

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

show response body
Revision conflict:

shell>	curl	-X	DELETE	--header	'If-Match:	"1395071066"'	--dump	-	http://localhost:8529/_api/document/products/1394743386

HTTP/1.1	412	Precondition	Failed

content-type:	application/json;	charset=utf-8

etag:	"1394743386"

show response body
reads a single document head

Read document header 	HEAD	/_api/document/{document-handle}	

document-handle: The handle of the document.

rev: You can conditionally fetch a document based on a target revision id by using
the rev URL parameter.

If-None-Match: If the "If-None-Match" header is given, then it must contain exactly
one etag. If the current document revision is different to the specified etag, an HTTP
200 response is returned. If the current document revision is identical to the specified
etag, then an HTTP 304 is returned.

If-Match: You can conditionally fetch a document based on a target revision id by
using the if-match HTTP header.

Like GET, but only returns the header fields and not the body. You can use this call to get
the current revision of a document or check if the document was deleted.

Return Codes

200: is returned if the document was found

304: is returned if the "If-None-Match" header is given and the document has same
version ///*
404: is returned if the document or collection was not found

412: is returned if a "If-Match" header or rev is given and the found document has a
different version. The response will also contain the found document's current
revision in the etag header.

Examples

shell>	curl	-X	HEAD	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products/1385502810

reads all documents from collection

Read all documents 	GET	/_api/document	

collection: The name of the collection.

type: The type of the result. The following values are allowed:

id: returns a list of document ids (_id attributes)
key: returns a list of document keys (_key attributes)
path: returns a list of document URI paths. This is the default.

Returns a list of all keys, ids, or URI paths for all documents in the collection identified by
collection. The type of the result list is determined by the type attribute.

Note that the results have no defined order and thus the order should not be relied on.

Return Codes

200: All went good.

404: The collection does not exist.

Examples

Returns all document paths

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/?collection=products

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Returns all document keys

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/?collection=products&type=key

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Collection does not exist.

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/?collection=doesnotexist

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

show response body

This is an introduction to ArangoDB's REST interface for edges.

ArangoDB offers also some graph functionality. A graph consists of nodes, edges and
properties. ArangoDB stores the information how the nodes relate to each other aside
from the properties.

A graph data model always consists of two collections: the relations between the nodes
in the graphs are stored in an "edges collection", the nodes in the graph are stored in
documents in regular collections.

Example:

the "edge" collection stores the information that a company's reception is sub-unit to
the services unit and the services unit is sub-unit to the CEO. You would express this
relationship with the to and _to attributes
the "normal" collection stores all the properties about the reception, e.g. that 20
people are working there and the room number etc
_from is the document handle of the linked vertex (incoming relation)
_to is the document handle of the linked vertex (outgoing relation)

Edges in ArangoDB are special documents. In addition to the internal attributes _key, _id
and _rev, they have two attributes _from and _to, which contain document handles,
namely the start-point and the end-point of the edge.

The values of _from and _to are immutable once saved.

HTTP Interface for Edges

Documents, Identifiers, Handles

All documents in ArangoDB have a document handle. This handle uniquely identifies a
document. Any document can be retrieved using its unique URI:

http://server:port/_api/document/<document-handle>

Edges are a special variation of documents, and to work with edges, the above URL
format changes to:

http://server:port/_api/edge/<document-handle>

For example, assumed that the document handle, which is stored in the _id attribute of
the edge, is demo/362549736, then the URL of that edge is:

http://localhost:8529/_api/edge/demo/362549736

The above URL scheme does not specify a database name explicitly, so the default
database will be used. To explicitly specify the database context, use the following URL
schema:

http://server:port/_db/<database-name>/_api/edge/<document-handle>

Example:

http://localhost:8529/_db/mydb/_api/edge/demo/362549736

Note: that the following examples use the short URL format for brevity.

Address and ETag of an Edge

reads a single edge

Read edge 	GET	/_api/edge/{document-handle}	

document-handle: The handle of the edge document.

If-None-Match: If the "If-None-Match" header is given, then it must contain exactly
one etag. The edge is returned if it has a different revision than the given etag.
Otherwise an HTTP 304 is returned.

If-Match: If the "If-Match" header is given, then it must contain exactly one etag. The
edge is returned if it has the same revision ad the given etag. Otherwise a HTTP 412
is returned. As an alternative you can supply the etag in an attribute rev in the URL.

Returns the edge identified by document-handle. The returned edge contains a few
special attributes:

_id contains the document handle

_rev contains the revision

_from and to contain the document handles of the connected vertex documents

Return Codes

200: is returned if the edge was found

304: is returned if the "If-None-Match" header is given and the edge has the same
version

404: is returned if the edge or collection was not found

412: is returned if a "If-Match" header or rev is given and the found document has a
different version. The response will also contain the found document's current
revision in the _rev attribute. Additionally, the attributes _id and _key will be returned.

reads all edges from collection

Working with Edges using REST

Read all edges from collection 	GET	/_api/edge	

collection: The name of the collection.

Returns a list of all URI for all edges from the collection identified by collection.

Return Codes

200: All went good.

404: The collection does not exist.

creates an edge

Create edge 	POST	/_api/edge	

edge-document: A JSON representation of the edge document must be passed as
the body of the POST request. This JSON object may contain the edge's document
key in the _key attribute if needed.

collection: Creates a new edge in the collection identified by collection name.

createCollection: If this parameter has a value of true or yes, then the collection is
created if it does not yet exist. Other values will be ignored so the collection must be
present for the operation to succeed.

Note: This flag is not supported in a cluster. Using it will result in an error.

waitForSync: Wait until the edge document has been synced to disk.

from: The document handle of the start point must be passed in from handle.

to: The document handle of the end point must be passed in to handle.

Creates a new edge document in the collection named collection. A JSON representation
of the document must be passed as the body of the POST request.

The from and to handles are immutable once the edge has been created.

In all other respects the method works like POST /document.

Return Codes

201: is returned if the edge was created successfully and waitForSync was true.

202: is returned if the edge was created successfully.

400: is returned if the body does not contain a valid JSON representation of an edge,
or if the collection specified is not an edge collection. The response body contains an
error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

Create an edge and read it back:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/edge/?collection=edges&from=vertices/1&to=vertices/2

{	

		"name"	:	"Emil"	

}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	"1397364826"

location:	/_db/_system/_api/document/edges/1397364826

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/edge/edges/1397364826

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

etag:	"1397364826"

show response body
updates an edge

Patches edge 	PATCH	/_api/edge/{document-handle}	

document: A JSON representation of the edge update.

document-handle: The handle of the edge document.

keepNull: If the intention is to delete existing attributes with the patch command, the
URL query parameter keepNull can be used with a value of false. This will modify the
behavior of the patch command to remove any attributes from the existing edge
document that are contained in the patch document with an attribute value of null.

waitForSync: Wait until edge document has been synced to disk.

rev: You can conditionally patch an edge document based on a target revision id by
using the rev URL parameter.

policy: To control the update behavior in case there is a revision mismatch, you can
use the policy parameter.

If-Match: You can conditionally patch an edge document based on a target revision
id by using the if-match HTTP header.

Partially updates the edge document identified by document-handle. The body of the
request must contain a JSON document with the attributes to patch (the patch
document). All attributes from the patch document will be added to the existing edge
document if they do not yet exist, and overwritten in the existing edge document if they
do exist there.

Setting an attribute value to null in the patch document will cause a value of null be saved
for the attribute by default.

Note: Internal attributes such as _key, _from and _to are immutable once set and cannot
be updated.

Optionally, the URL parameter waitForSync can be used to force synchronisation of the
edge document update operation to disk even in case that the waitForSync flag had been
disabled for the entire collection. Thus, the waitForSync URL parameter can be used to
force synchronisation of just specific operations. To use this, set the waitForSync
parameter to true. If the waitForSync parameter is not specified or set to false, then the
collection's default waitForSync behavior is applied. The waitForSync URL parameter
cannot be used to disable synchronisation for collections that have a default waitForSync
value of true.

The body of the response contains a JSON object with the information about the handle
and the revision. The attribute _id contains the known document-handle of the updated
edge document, the attribute _rev contains the new edge document revision.

If the edge document does not exist, then a HTTP 404 is returned and the body of the
response contains an error document.

You can conditionally update an edge document based on a target revision id by using
either the rev URL parameter or the if-match HTTP header. To control the update
behavior in case there is a revision mismatch, you can use the policy parameter. This is

the same as when replacing edge documents (see replacing documents for details).

Return Codes

201: is returned if the document was patched successfully and waitForSync was
true.

202: is returned if the document was patched successfully and waitForSync was
false.

400: is returned if the body does not contain a valid JSON representation or when
applied on an non-edge collection. The response body contains an error document in
this case.

404: is returned if the collection or the edge document was not found

412: is returned if a "If-Match" header or rev is given and the found document has a
different version. The response will also contain the found document's current
revision in the _rev attribute. Additionally, the attributes _id and _key will be returned.

replaces an edge

replaces an edge 	PUT	/_api/edge/{document-handle}	

edge: A JSON representation of the new edge data.

document-handle: The handle of the edge document.

waitForSync: Wait until edge document has been synced to disk.

rev: You can conditionally replace an edge document based on a target revision id
by using the rev URL parameter.

policy: To control the update behavior in case there is a revision mismatch, you can
use the policy parameter (see below).

If-Match: You can conditionally replace an edge document based on a target revision
id by using the if-match HTTP header.

Completely updates (i.e. replaces) the edge document identified by document-handle. If
the edge document exists and can be updated, then a HTTP 201 is returned and the
"ETag" header field contains the new revision of the edge document.

If the new edge document passed in the body of the request contains the document-
handle in the attribute _id and the revision in _rev, these attributes will be ignored. Only
the URI and the "ETag" header are relevant in order to avoid confusion when using
proxies. Note: The attributes _from and _to of an edge are immutable and cannot be
updated either.

Optionally, the URL parameter waitForSync can be used to force synchronisation of the
edge document replacement operation to disk even in case that the waitForSync flag had
been disabled for the entire collection. Thus, the waitForSync URL parameter can be
used to force synchronisation of just specific operations. To use this, set the waitForSync
parameter to true. If the waitForSync parameter is not specified or set to false, then the
collection's default waitForSync behavior is applied. The waitForSync URL parameter
cannot be used to disable synchronisation for collections that have a default waitForSync
value of true.

The body of the response contains a JSON object with the information about the handle
and the revision. The attribute _id contains the known document-handle of the updated
edge document, the attribute _rev contains the new revision of the edge document.

If the edge document does not exist, then a HTTP 404 is returned and the body of the
response contains an error document.

There are two ways for specifying the targeted revision id for conditional replacements
(i.e. replacements that will only be executed if the revision id found in the database
matches the revision id specified in the request):

specifying the target revision in the rev URL query parameter
specifying the target revision in the if-match HTTP header

Specifying a target revision is optional, however, if done, only one of the described
mechanisms must be used (either the rev URL parameter or the if-match HTTP header).
Regardless which mechanism is used, the parameter needs to contain the target revision
id as returned in the _rev attribute of an edge document or by an HTTP etag header.

For example, to conditionally replace an edge document based on a specific revision id,
you can use the following request:

PUT /_api/document/document-handle?rev=etag

If a target revision id is provided in the request (e.g. via the etag value in the rev URL
query parameter above), ArangoDB will check that the revision id of the edge document
found in the database is equal to the target revision id provided in the request. If there is

a mismatch between the revision id, then by default a HTTP 412 conflict is returned and
no replacement is performed.

The conditional update behavior can be overriden with the policy URL query parameter:

PUT /_api/document/document-handle?policy=policy

If policy is set to error, then the behavior is as before: replacements will fail if the revision
id found in the database does not match the target revision id specified in the request.

If policy is set to last, then the replacement will succeed, even if the revision id found in
the database does not match the target revision id specified in the request. You can use
the last policy to force replacements.

Return Codes

201: is returned if the edge document was replaced successfully and waitForSync
was true.

202: is returned if the edge document was replaced successfully and waitForSync
was false.

400: is returned if the body does not contain a valid JSON representation of an edge
document or if applied to a non-edge collection. The response body contains an
error document in this case.

404: is returned if the collection or the edge document was not found

412: is returned if a "If-Match" header or rev is given and the found document has a
different version. The response will also contain the found document's current
revision in the _rev attribute. Additionally, the attributes _id and _key will be returned.

deletes an edge

Deletes edge 	DELETE	/_api/edge/{document-handle}	

document-handle: Deletes the edge document identified by document-handle.

rev: You can conditionally delete an edge document based on a target revision id by
using the rev URL parameter.

policy: To control the update behavior in case there is a revision mismatch, you can
use the policy parameter. This is the same as when replacing edge documents (see

replacing edge documents for more details).

waitForSync: Wait until edge document has been synced to disk.

If-Match: You can conditionally delete an edge document based on a target revision
id by using the if-match HTTP header.

The body of the response contains a JSON object with the information about the handle
and the revision. The attribute _id contains the known document-handle of the deleted
edge document, the attribute _rev contains the edge document revision.

If the waitForSync parameter is not specified or set to false, then the collection's default
waitForSync behavior is applied. The waitForSync URL parameter cannot be used to
disable synchronisation for collections that have a default waitForSync value of true.

Return Codes

200: is returned if the edge document was deleted successfully and waitForSync
was true.

202: is returned if the edge document was deleted successfully and waitForSync
was false.

404: is returned if the collection or the edge document was not found. The response
body contains an error document in this case.

412: is returned if a "If-Match" header or rev is given and the found document has a
different version. The response will also contain the found document's current
revision in the _rev attribute. Additionally, the attributes _id and _key will be returned.

reads a single edge head

Read edge header 	HEAD	/_api/edge/{document-handle}	

document-handle: The handle of the edge document.

rev: You can conditionally fetch an edge document based on a target revision id by
using the rev URL parameter.

If-Match: You can conditionally fetch an edge document based on a target revision id
by using the if-match HTTP header.

Like GET, but only returns the header fields and not the body. You can use this call to get

the current revision of an edge document or check if it was deleted.

Return Codes

200: is returned if the edge document was found

304: is returned if the "If-None-Match" header is given and the edge document has
same version

404: is returned if the edge document or collection was not found

412: is returned if a "If-Match" header or rev is given and the found document has a
different version. The response will also contain the found document's current
revision in the etag header.

get edges

Read in- or outbound edges 	GET	/_api/edges/{collection-id}	

collection-id: The id of the collection.

vertex: The id of the start vertex.

direction: Selects in or out direction for edges. If not set, any edges are returned.

Returns the list of edges starting or ending in the vertex identified by vertex-handle.

Examples

Any direction

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/edges/edges?vertex=vertices/1

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
In edges

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/edges/edges?vertex=vertices/1&direction=in

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Out edges

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/edges/edges?vertex=vertices/1&direction=out

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body

Database Cursors

This is an introduction to ArangoDB's HTTP Interface for Queries. Results of AQL and
simple queries are returned as cursors in order to batch the communication between
server and client. Each call returns a number of documents in a batch and an indication,
if the current batch has been the final batch. Depending on the query, the total number of
documents in the result set might or might not be known in advance. In order to free
server resources the client should delete the cursor as soon as it is no longer needed.

To execute a query, the query details need to be shipped from the client to the server via
an HTTP POST request.

HTTP Interface for AQL Query Cursors

Select queries are executed on-the-fly on the server and the result set will be returned
back to the client.

There are two ways the client can get the result set from the server:

In a single roundtrip
Using a cursor

Single roundtrip

The server will only transfer a certain number of result documents back to the client in
one roundtrip. This number is controllable by the client by setting the batchSize attribute
when issuing the query.

If the complete result can be transferred to the client in one go, the client does not need
to issue any further request. The client can check whether it has retrieved the complete
result set by checking the hasMore attribute of the result set. If it is set to false, then the
client has fetched the complete result set from the server. In this case no server side
cursor will be created.

>	curl	--data	@-	-X	POST	--dump	-	http://localhost:8529/_api/cursor

{	"query"	:	"FOR	u	IN	users	LIMIT	2	RETURN	u",	"count"	:	true,	"batchSize"	:	2	}

HTTP/1.1	201	Created

content-type:	application/json

{

		"hasMore"	:	false,

		"error"	:	false,

		"result"	:	[

				{

						"name"	:	"user1",

						"_rev"	:	"210304551",

						"_key"	:	"210304551",

						"_id"	:	"users/210304551"

				},

				{

						"name"	:	"user2",

						"_rev"	:	"210304552",

						"_key"	:	"210304552",

						"_id"	:	"users/210304552"

				}

],

		"code"	:	201,

Retrieving query results

		"count"	:	2

}

Using a Cursor

If the result set contains more documents than should be transferred in a single roundtrip
(i.e. as set via the batchSize attribute), the server will return the first few documents and
create a temporary cursor. The cursor identifier will also be returned to the client. The
server will put the cursor identifier in the id attribute of the response object. Furthermore,
the hasMore attribute of the response object will be set to true. This is an indication for
the client that there are additional results to fetch from the server.

Examples:

Create and extract first batch:

>	curl	--data	@-	-X	POST	--dump	-	http://localhost:8529/_api/cursor

{	"query"	:	"FOR	u	IN	users	LIMIT	5	RETURN	u",	"count"	:	true,	"batchSize"	:	2	}

HTTP/1.1	201	Created

content-type:	application/json

{

		"hasMore"	:	true,

		"error"	:	false,

		"id"	:	"26011191",

		"result"	:	[

				{

						"name"	:	"user1",

						"_rev"	:	"258801191",

						"_key"	:	"258801191",

						"_id"	:	"users/258801191"

				},

				{

						"name"	:	"user2",

						"_rev"	:	"258801192",

						"_key"	:	"258801192",

						"_id"	:	"users/258801192"

				}

],

		"code"	:	201,

		"count"	:	5

}

Extract next batch, still have more:

>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/cursor/26011191

HTTP/1.1	200	OK

content-type:	application/json

{

		"hasMore"	:	true,

		"error"	:	false,

		"id"	:	"26011191",

		"result":	[

				{

						"name"	:	"user3",

						"_rev"	:	"258801193",

						"_key"	:	"258801193",

						"_id"	:	"users/258801193"

				},

				{

						"name"	:	"user4",

						"_rev"	:	"258801194",

						"_key"	:	"258801194",

						"_id"	:	"users/258801194"

				}

],

		"code"	:	200,

		"count"	:	5

}

Extract next batch, done:

>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/cursor/26011191

HTTP/1.1	200	OK

content-type:	application/json

{

		"hasMore"	:	false,

		"error"	:	false,

		"result"	:	[

				{

						"name"	:	"user5",

						"_rev"	:	"258801195",

						"_key"	:	"258801195",

						"_id"	:	"users/258801195"

				}

],

		"code"	:	200,

		"count"	:	5

}

Do not do this because hasMore now has a value of false:

>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/cursor/26011191

HTTP/1.1	404	Not	Found

content-type:	application/json

{

		"errorNum":	1600,

		"errorMessage":	"cursor	not	found:	disposed	or	unknown	cursor",

		"error":	true,

		"code":	404

}

create a cursor and return the first results

Create cursor 	POST	/_api/cursor	

query: A JSON object describing the query and query parameters.

The query details include the query string plus optional query options and bind
parameters. These values need to be passed in a JSON representation in the body of the
POST request.

The following attributes can be used inside the JSON object:

query: contains the query string to be executed (mandatory)

count: boolean flag that indicates whether the number of documents in the result set
should be returned in the "count" attribute of the result (optional). Calculating the
"count" attribute might in the future have a performance impact for some queries so
this option is turned off by default, and "count" is only returned when requested.

batchSize: maximum number of result documents to be transferred from the server
to the client in one roundtrip (optional). If this attribute is not set, a server-controlled
default value will be used.

ttl: an optional time-to-live for the cursor (in seconds). The cursor will be removed on
the server automatically after the specified amount of time. This is useful to ensure
garbage collection of cursors that are not fully fetched by clients. If not set, a server-
defined value will be used.

bindVars: key/value list of bind parameters (optional).

options: key/value list of extra options for the query (optional).

The following options are supported at the moment:

fullCount: if set to true and the query contains a LIMIT clause, then the result will
contain an extra attribute extra with a sub-attribute fullCount. This sub-attribute will
contain the number of documents in the result before the last LIMIT in the query was
applied. It can be used to count the number of documents that match certain filter

Accessing Cursors via HTTP

criteria, but only return a subset of them, in one go. It is thus similar to MySQL's
SQL_CALC_FOUND_ROWS hint. Note that setting the option will disable a few
LIMIT optimizations and may lead to more documents being processed, and thus
make queries run longer. Note that the fullCount sub-attribute will only be present in
the result if the query has a LIMIT clause and the LIMIT clause is actually used in the
query.

If the result set can be created by the server, the server will respond with HTTP 201. The
body of the response will contain a JSON object with the result set.

The returned JSON object has the following properties:

error: boolean flag to indicate that an error occurred (false in this case)

code: the HTTP status code

result: an array of result documents (might be empty if query has no results)

hasMore: a boolean indicator whether there are more results available for the cursor
on the server

count: the total number of result documents available (only available if the query was
executed with the count attribute set)

id: id of temporary cursor created on the server (optional, see above)

extra: an optional JSON object with extra information about the query result. For
data-modification queries, the extra attribute will contain the number of modified
documents and the number of documents that could not be modified due to an error
(if ignoreErrors query option is specified)

If the JSON representation is malformed or the query specification is missing from the
request, the server will respond with HTTP 400.

The body of the response will contain a JSON object with additional error details. The
object has the following attributes:

error: boolean flag to indicate that an error occurred (true in this case)

code: the HTTP status code

errorNum: the server error number

errorMessage: a descriptive error message

If the query specification is complete, the server will process the query. If an error occurs
during query processing, the server will respond with HTTP 400. Again, the body of the
response will contain details about the error.

A list of query errors can be found (../ArangoErrors/README.md) here.

Return Codes

201: is returned if the result set can be created by the server.

400: is returned if the JSON representation is malformed or the query specification is
missing from the request.

404: The server will respond with HTTP 404 in case a non-existing collection is
accessed in the query.

405: The server will respond with HTTP 405 if an unsupported HTTP method is
used.

Examples

Executes a query and extract the result in a single go:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor

{"query":"FOR	p	IN	products	LIMIT	2	RETURN	p","count":true,"batchSize":2}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
Executes a query and extracts part of the result:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor

{"query":"FOR	p	IN	products	LIMIT	5	RETURN	p","count":true,"batchSize":2}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
Using a query option:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor

{"query":"FOR	i	IN	1..1000	FILTER	i	>	500	LIMIT	10	RETURN	i","count":true,"options":{"fullCount":true}}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
Executes a data-modification query and retrieves the number of modified documents:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor

{"query":"FOR	p	IN	products	REMOVE	p	IN	products"}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
Executes a data-modification query with option ignoreErrors:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor

{"query":"REMOVE	'bar'	IN	products	OPTIONS	{	ignoreErrors:	true	}"}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
Bad queries:

Missing body:

shell>	curl	-X	POST	--dump	-	http://localhost:8529/_api/cursor

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

show response body
Unknown collection:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor

{"query":"FOR	u	IN	unknowncoll	LIMIT	2	RETURN	u","count":true,"batchSize":2}

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

show response body
Executes a data-modification query that attempts to remove a non-existing document:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor

{"query":"REMOVE	'foo'	IN	products"}

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

show response body
parse an AQL query and return information about it

Parse an AQL query 	POST	/_api/query	

query: To validate a query string without executing it, the query string can be passed
to the server via an HTTP POST request.

The query string needs to be passed in the attribute query of a JSON object as the body
of the POST request.

Return Codes

200: If the query is valid, the server will respond with HTTP 200 and return the
names of the bind parameters it found in the query (if any) in the bindVars attribute
of the response. It will also return a list of the collections used in the query in the
collections attribute. If a query can be parsed successfully, the ast attribute of the
returned JSON will contain the abstract syntax tree representation of the query. The
format of the ast is subject to change in future versions of ArangoDB, but it can be
used to inspect how ArangoDB interprets a given query. Note that the abstract
syntax tree will be returned without any optimizations applied to it.

400: The server will respond with HTTP 400 in case of a malformed request, or if the
query contains a parse error. The body of the response will contain the error details
embedded in a JSON object.

Examples

Valid query:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/query

{	"query"	:	"FOR	p	IN	products	FILTER	p.name	==	@name	LIMIT	2	RETURN	p.n"	}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Invalid query:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/query

{	"query"	:	"FOR	p	IN	products	FILTER	p.name	=	@name	LIMIT	2	RETURN	p.n"	}

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

show response body
return the next results from an existing cursor

Read next batch from cursor 	PUT	/_api/cursor/{cursor-identifier}	

cursor-identifier: The name of the cursor

If the cursor is still alive, returns an object with the following attributes.

id: the cursor-identifier
result: a list of documents for the current batch
hasMore: false if this was the last batch
count: if present the total number of elements

Note that even if hasMore returns true, the next call might still return no documents. If,
however, hasMore is false, then the cursor is exhausted. Once the hasMore attribute has
a value of false, the client can stop.

Return Codes

200: The server will respond with HTTP 200 in case of success.

400: If the cursor identifier is omitted, the server will respond with HTTP 404.

404: If no cursor with the specified identifier can be found, the server will respond
with HTTP 404.

Examples

Valid request for next batch:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor

{"query":"FOR	p	IN	products	LIMIT	5	RETURN	p","count":true,"batchSize":2}

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/cursor/922294362

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Missing identifier

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/cursor

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

show response body
Unknown identifier

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/cursor/123123

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

show response body
dispose an existing cursor

Delete cursor 	DELETE	/_api/cursor/{cursor-identifier}	

cursor-identifier: The name of the cursor

Deletes the cursor and frees the resources associated with it.

The cursor will automatically be destroyed on the server when the client has retrieved all
documents from it. The client can also explicitly destroy the cursor at any earlier time
using an HTTP DELETE request. The cursor id must be included as part of the URL.

Note: the server will also destroy abandoned cursors automatically after a certain server-

controlled timeout to avoid resource leakage.

Return Codes

202: is returned if the server is aware of the cursor.

404: is returned if the server is not aware of the cursor. It is also returned if a cursor
is used after it has been destroyed.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor

{"query":"FOR	p	IN	products	LIMIT	5	RETURN	p","count":true,"batchSize":2}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor/924260442

show response body

ArangoDB has an Http interface to syntactically validate AQL queries. Furthermore, it
offers an Http interface to retrieve the execution plan for any valid AQL query.

Both functionalities do not actually execute the supplied AQL query, but only inspect it
and return meta information about it.

explain an AQL query and return information about it

Explain an AQL query 	POST	/_api/explain	

body: The query string needs to be passed in the attribute query of a JSON object as
the body of the POST request. If the query references any bind variables, these must
also be passed in the attribute bindVars. Additional options for the query can be
passed in the options attribute.

The currently supported options are:

allPlans: if set to true, all possible execution plans will be returned. The default is
false, meaning only the optimal plan will be returned.
maxPlans: an optional maximum number of plans that the optimizer is allowed to
generate. Setting this attribute to a low value allows to put a cap on the amount of
work the optimizer does.
optimizer.rules: a list of to-be-included or to-be-excluded optimizer rules can be put
into this attribute, telling the optimizer to include or exclude specific rules.

To explain how an AQL query would be executed on the server, the query string can be
sent to the server via an HTTP POST request. The server will then validate the query and
create an execution plan for it. The execution plan will be returned, but the query will not
be executed.

The execution plan that is returned by the server can be used to estimate the probable
performance of the query. Though the actual performance will depend on many different
factors, the execution plan normally can provide some rough estimates on the amount of
work the server needs to do in order to actually run the query.

By default, the explain operation will return the optimal plan as chosen by the query
optimizer The optimal plan is the plan with the lowest total estimated cost. The plan will
be returned in the attribute plan of the response object. If the option allPlans is specified

HTTP Interface for AQL Queries

in the request, the result will contain all plans created by the optimizer. The plans will
then be returned in the attribute plans.

The result will also contain an attribute warnings, which is a list of warnings that occurred
during optimization or execution plan creation.

Each plan in the result is a JSON object with the following attributes:

nodes: the list of execution nodes of the plan. The list of available node types can be
found here
estimatedCost: the total estimated cost for the plan. If there are multiple plans, the
optimizer will choose the plan with the lowest total cost.
collections: a list of collections used in the query
rules: a list of rules the optimizer applied. The list of rules can be found here
variables: list of variables used in the query (note: this may contain internal variables
created by the optimizer)

Return Codes

200: If the query is valid, the server will respond with HTTP 200 and return the
optimal execution plan in the plan attribute of the response. If option allPlans was set
in the request, a list of plans will be returned in the allPlans attribute instead.

400: The server will respond with HTTP 400 in case of a malformed request, or if the
query contains a parse error. The body of the response will contain the error details
embedded in a JSON object. Omitting bind variables if the query references any will
also result in an HTTP 400 error.

404: The server will respond with HTTP 404 in case a non-existing collection is
accessed in the query.

Examples

Valid query:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/explain

{"query":"FOR	p	IN	products	RETURN	p"}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body

A plan with some optimizer rules applied:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/explain

{"query":"FOR	p	IN	products	LET	a	=	p.id	FILTER	a	==	4	LET	name	=	p.name	SORT	p.id	LIMIT	1	RETURN	name"}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Returning all plans:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/explain

{"query":"FOR	p	IN	products	FILTER	p.id	==	25	RETURN	p","options":{"allPlans":true}}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
A query that produces a warning:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/explain

{"query":"FOR	i	IN	1..10	RETURN	1	/	0"}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Invalid query (missing bind parameter):

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/explain

{	

		"query"	:	"FOR	p	IN	products	FILTER	p.id	==	@id	LIMIT	2	RETURN	p.n"	

}

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

show response body
The data returned in the plan attribute of the result contains one element per AQL top-
level statement (i.e. FOR, RETURN, FILTER etc.). If the query optimiser removed some

unnecessary statements, the result might also contain less elements than there were top-
level statements in the AQL query. The following example shows a query with a non-
sensible filter condition that the optimiser has removed so that there are less top-level
statements:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/explain

{	"query"	:	"FOR	i	IN	[1,	2,	3]	FILTER	1	==	2	RETURN	i"	}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
parse an AQL query and return information about it

Parse an AQL query 	POST	/_api/query	

query: To validate a query string without executing it, the query string can be passed
to the server via an HTTP POST request.

The query string needs to be passed in the attribute query of a JSON object as the body
of the POST request.

Return Codes

200: If the query is valid, the server will respond with HTTP 200 and return the
names of the bind parameters it found in the query (if any) in the bindVars attribute
of the response. It will also return a list of the collections used in the query in the
collections attribute. If a query can be parsed successfully, the ast attribute of the
returned JSON will contain the abstract syntax tree representation of the query. The
format of the ast is subject to change in future versions of ArangoDB, but it can be
used to inspect how ArangoDB interprets a given query. Note that the abstract
syntax tree will be returned without any optimizations applied to it.

400: The server will respond with HTTP 400 in case of a malformed request, or if the
query contains a parse error. The body of the response will contain the error details
embedded in a JSON object.

Examples

Valid query:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/query

{	"query"	:	"FOR	p	IN	products	FILTER	p.name	==	@name	LIMIT	2	RETURN	p.n"	}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Invalid query:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/query

{	"query"	:	"FOR	p	IN	products	FILTER	p.name	=	@name	LIMIT	2	RETURN	p.n"	}

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

show response body

AQL User Functions Management

This is an introduction to ArangoDB's Http interface for managing AQL user functions.
AQL user functions are a means to extend the functionality of ArangoDB's query
language (AQL) with user-defined Javascript code.

For an overview of how AQL user functions work, please refer to Extending Aql.

The Http interface provides an API for adding, deleting, and listing previously registered
AQL user functions.

All user functions managed through this interface will be stored in the system collection
_aqlfunctions. Documents in this collection should not be accessed directly, but only via
the dedicated interfaces.

create a new AQL user function

Create AQL user function 	POST	/_api/aqlfunction	

body: the body with name and code of the aql user function.

The following data need to be passed in a JSON representation in the body of the POST
request:

name: the fully qualified name of the user functions.

code: a string representation of the function body.

isDeterministic: an optional boolean value to indicate that the function results are
fully deterministic (function return value solely depends on the input value and return
value is the same for repeated calls with same input). The isDeterministic attribute is
currently not used but may be used later for optimisations.

In case of success, the returned JSON object has the following properties:

error: boolean flag to indicate that an error occurred (false in this case)

HTTP Interface for AQL User Functions
Management

code: the HTTP status code

The body of the response will contain a JSON object with additional error details. The
object has the following attributes:

error: boolean flag to indicate that an error occurred (true in this case)

code: the HTTP status code

errorNum: the server error number

errorMessage: a descriptive error message

Return Codes

200: If the function already existed and was replaced by the call, the server will
respond with HTTP 200.

201: If the function can be registered by the server, the server will respond with
HTTP 201.

400: If the JSON representation is malformed or mandatory data is missing from the
request, the server will respond with HTTP 400.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/aqlfunction

{	"name"	:	"myfunctions::temperature::celsiustofahrenheit",	"code"	:	"function	(celsius)	{	return	celsius	*	1.8	+	32;	}"	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

{	

		"error"	:	false,	

		"code"	:	201	

}

remove an existing AQL user function

Remove existing AQL user function 	DELETE	/_api/aqlfunction/{name}	

name: the name of the AQL user function.

group: If set to true, then the function name provided in name is treated as a
namespace prefix, and all functions in the specified namespace will be deleted. If set
to false, the function name provided in name must be fully qualified, including any
namespaces.

Removes an existing AQL user function, identified by name.

In case of success, the returned JSON object has the following properties:

error: boolean flag to indicate that an error occurred (false in this case)

code: the HTTP status code

The body of the response will contain a JSON object with additional error details. The
object has the following attributes:

error: boolean flag to indicate that an error occurred (true in this case)

code: the HTTP status code

errorNum: the server error number

errorMessage: a descriptive error message

Return Codes

200: If the function can be removed by the server, the server will respond with HTTP
200.

400: If the user function name is malformed, the server will respond with HTTP 400.

404: If the specified user user function does not exist, the server will respond with
HTTP 404.

Examples

deletes a function:

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/aqlfunction/square::x::y

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

{	

		"error"	:	false,	

		"code"	:	200	

}

function not found:

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/aqlfunction/myfunction::x::y

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

show response body
gets all reqistered AQL user functions

Return registered AQL user functions 	GET	/_api/aqlfunction	

namespace: Returns all registered AQL user functions from namespace namespace.

Returns all registered AQL user functions.

The call will return a JSON list with all user functions found. Each user function will at
least have the following attributes:

name: The fully qualified name of the user function

code: A string representation of the function body

Return Codes

200: if success HTTP 200 is returned.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/aqlfunction

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

[]

Simple Queries

This is an introduction to ArangoDB's Http interface for simple queries.

Simple queries can be used if the query condition is straight forward simple, i.e., a
document reference, all documents, a query-by-example, or a simple geo query. In a
simple query you can specify exactly one collection and one condition. The result can
then be sorted and can be split into pages.

To limit the amount of results to be transferred in one batch, simple queries support a
batchSize parameter that can optionally be used to tell the server to limit the number of
results to be transferred in one batch to a certain value. If the query has more results
than were transferred in one go, more results are waiting on the server so they can be
fetched subsequently. If no value for the batchSize parameter is specified, the server will
use a reasonable default value.

If the server has more documents than should be returned in a single batch, the server
will set the hasMore attribute in the result. It will also return the id of the server-side
cursor in the id attribute in the result. This id can be used with the cursor API to fetch any
outstanding results from the server and dispose the server-side cursor afterwards.

returns all documents of a collection

Return all 	PUT	/_api/simple/all	

query: Contains the query.

Returns all documents of a collections. The call expects a JSON object as body with the
following attributes:

collection: The name of the collection to query.

skip: The number of documents to skip in the query (optional).

limit: The maximal amount of documents to return. The skip is applied before the

HTTP Interface for Simple Queries

Working with Simples Queries using HTTP

limit restriction. (optional)

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

Limit the amount of documents using limit

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/all

{	"collection":	"products",	"skip":	2,	"limit"	:	2	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
Using a batchSize value

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/all

{	"collection":	"products",	"batchSize"	:	3	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
returns all documents of a collection matching a given example

Simple query by-example 	PUT	/_api/simple/by-example	

query: Contains the query.

This will find all documents matching a given example.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

example: The example document.

skip: The number of documents to skip in the query (optional).

limit: The maximal amount of documents to return. The skip is applied before the
limit restriction. (optional)

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

Matching an attribute:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/by-example

{	"collection":	"products",	"example"	:		{	"i"	:	1	}		}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
Matching an attribute which is a sub-document:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/by-example

{	"collection":	"products",	"example"	:	{	"a.j"	:	1	}	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
Matching an attribute within a sub-document:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/by-example

{	"collection":	"products",	"example"	:	{	"a"	:	{	"j"	:	1	}	}	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
returns one document of a collection matching a given example

Document matching an example 	PUT	/_api/simple/first-example	

query: Contains the query.

This will return the first document matching a given example.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

example: The example document.

Returns a result containing the document or HTTP 404 if no document matched the
example.

If more than one document in the collection matches the specified example, only one of
these documents will be returned, and it is undefined which of the matching documents is
returned.

Return Codes

200: is returned when the query was successfully executed.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

If a matching document was found:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/first-example

{	"collection":	"products",	"example"	:		{	"i"	:	1	}		}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
If no document was found:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/first-example

{	"collection":	"products",	"example"	:		{	"l"	:	1	}		}

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

show response body
returns all documents of a collection matching a given example, using a specific hash
index

Hash index 	PUT	/_api/simple/by-example-hash	

query: Contains the query specification.

This will find all documents matching a given example, using the specified hash index.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

index: The id of the index to be used for the query. The index must exist and must be
of type hash.

example: an example document. The example must contain a value for each
attribute in the index.

skip: The number of documents to skip in the query. (optional)

limit: The maximal number of documents to return. (optional)

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case. The same error code is also returned
if an invalid index id or type is used.

returns all documents of a collection matching a given example, using a specific
skiplist index

Skiplist index 	PUT	/_api/simple/by-example-skiplist	

Note: This is only used internally and should not be accesible by the user.

query: Contains the query specification.

This will find all documents matching a given example, using the specified skiplist index.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

index: The id of the index to be used for the query. The index must exist and must be
of type skiplist.

example: an example document. The example must contain a value for each
attribute in the index.

skip: The number of documents to skip in the query. (optional)

limit: The maximal number of documents to return. (optional)

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case. The same error code is also returned
if an invalid index id or type is used.

returns all documents of a collection matching a given example, using a specific
bitarray index

Bitarray index 	PUT	/_api/simple/by-example-bitarray	

query: Contains the query specification.

This will find all documents matching a given example, using the specified skiplist index.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

index: The id of the index to be used for the query. The index must exist and must be
of type bitarray.

example: an example document. The example must contain a value for each
attribute in the index.

skip: The number of documents to skip in the query. (optional)

limit: The maximal number of documents to return. (optional)

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case. The same error code is also returned

if an invalid index id or type is used.

returns all documents of a collection matching a given condition, using a specific
skiplist index

Query by-condition using Skiplist index 	PUT	/_api/simple/by-condition-skiplist	

query: Contains the query specification.

This will find all documents matching a given condition, using the specified skiplist index.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

index: The id of the index to be used for the query. The index must exist and must be
of type skiplist.

condition: the condition which all returned documents shall satisfy. Conditions must
be specified for all indexed attributes.

skip: The number of documents to skip in the query. (optional)

limit: The maximal number of documents to return. (optional)

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case. The same error code is also returned
if an invalid index id or type is used.

returns all documents of a collection matching a given condition, using a specific
bitarray index

Query by-condition using bitarray index 	PUT	/_api/simple/by-condition-bitarray	

query: Contains the query specification.

This will find all documents matching a given condition, using the specified skiplist index.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

index: The id of the index to be used for the query. The index must exist and must be
of type bitarray.

condition: the condition which all returned documents shall satisfy. Conditions must
be specified for all indexed attributes.

skip: The number of documents to skip in the query. (optional)

limit: The maximal number of documents to return. (optional)

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case. The same error code is also returned
if an invalid index id or type is used.

returns a random document from a collection

Random document 	PUT	/_api/simple/any	

query: Contains the query.

Returns a random document from a collection. The call expects a JSON object as body
with the following attributes:

collection: The identifier or name of the collection to query.

Returns a JSON object with the document stored in the attribute document if the

collection contains at least one document. If the collection is empty, the document
attrbute contains null.

Return Codes

200: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/any

{	"collection":	"products"	}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
returns all documents of a collection within a range

Simple range query 	PUT	/_api/simple/range	

query: Contains the query.

This will find all documents within a given range. In order to execute a range query, a
skip-list index on the queried attribute must be present.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

attribute: The attribute path to check.

left: The lower bound.

right: The upper bound.

closed: If true, use interval including left and right, otherwise exclude right, but
include left.

skip: The number of documents to skip in the query (optional).

limit: The maximal amount of documents to return. The skip is applied before the
limit restriction. (optional)

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/range

{	"collection":	"products",	"attribute"	:	"i",	"left"	:	2,	"right"	:	4	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
returns all documents of a collection near a given location

Near query 	PUT	/_api/simple/near	

query: Contains the query.

The default will find at most 100 documents near the given coordinate. The returned list is
sorted according to the distance, with the nearest document being first in the list. If there
are near documents of equal distance, documents are chosen randomly from this set
until the limit is reached.

In order to use the near operator, a geo index must be defined for the collection. This
index also defines which attribute holds the coordinates for the document. If you have
more then one geo-spatial index, you can use the geo field to select a particular index.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

latitude: The latitude of the coordinate.

longitude: The longitude of the coordinate.

distance: If given, the attribute key used to return the distance to the given
coordinate. (optional). If specified, distances are returned in meters.

skip: The number of documents to skip in the query. (optional)

limit: The maximal amount of documents to return. The skip is applied before the
limit restriction. The default is 100. (optional)

geo: If given, the identifier of the geo-index to use. (optional)

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

Without distance:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near

{	"collection":	"products",	"latitude"	:	0,	"longitude"	:	0,	"skip"	:	1,	"limit"	:	2	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
With distance:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near

{	"collection":	"products",	"latitude"	:	0,	"longitude"	:	0,	"skip"	:	1,	"limit"	:	3,	"distance"	:	"distance"	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
returns all documents of a collection within a given radius

Within query 	PUT	/_api/simple/within	

query: Contains the query.

This will find all documents within a given radius around the coordinate (latitude,
longitude). The returned list is sorted by distance.

In order to use the within operator, a geo index must be defined for the collection. This
index also defines which attribute holds the coordinates for the document. If you have
more then one geo-spatial index, you can use the geo field to select a particular index.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

latitude: The latitude of the coordinate.

longitude: The longitude of the coordinate.

radius: The maximal radius (in meters).

distance: If given, the attribute key used to return the distance to the given
coordinate. (optional). If specified, distances are returned in meters.

skip: The number of documents to skip in the query. (optional)

limit: The maximal amount of documents to return. The skip is applied before the
limit restriction. The default is 100. (optional)

geo: If given, the identifier of the geo-index to use. (optional)

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

Without distance:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near

{	"collection":	"products",	"latitude"	:	0,	"longitude"	:	0,	"skip"	:	1,	"limit"	:	2,	"radius"	:	500	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
With distance:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near

{	"collection":	"products",	"latitude"	:	0,	"longitude"	:	0,	"skip"	:	1,	"limit"	:	3,	"distance"	:	"distance",	"radius"	:	300	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
returns documents of a collection as a result of a fulltext query

Fulltext index query 	PUT	/_api/simple/fulltext	

query: Contains the query.

This will find all documents from the collection that match the fulltext query specified in
query.

In order to use the fulltext operator, a fulltext index must be defined for the collection and

the specified attribute.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

attribute: The attribute that contains the texts.

query: The fulltext query.

skip: The number of documents to skip in the query (optional).

limit: The maximal amount of documents to return. The skip is applied before the
limit restriction. (optional)

index: The identifier of the fulltext-index to use.

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/fulltext

{	"collection":	"products",	"attribute"	:	"text",	"query"	:	"word"	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
removes all documents of a collection that match an example

Remove documents by example 	PUT	/_api/simple/remove-by-example	

query: Contains the query.

This will find all documents in the collection that match the specified example object.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to remove from.

example: An example document that all collection documents are compared against.

options: an json object which can contains following attributes:

waitForSync: if set to true, then all removal operations will instantly be synchronised
to disk. If this is not specified, then the collection's default sync behavior will be
applied.

limit: an optional value that determines how many documents to delete at most. If
limit is specified but is less than the number of documents in the collection, it is
undefined which of the documents will be deleted.

Note: the limit attribute is not supported on sharded collections. Using it will result in an
error. The options attributes waitForSync and limit can given yet without an ecapsulation
into a json object. but this may be deprecated in future versions of arango

Returns the number of documents that were deleted.

Return Codes

200: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/remove-by-example

{	"collection":	"products",	"example"	:	{	"a"	:	{	"j"	:	1	}	}	}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Using Parameter: waitForSync and limit

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/remove-by-example

{	"collection":	"products",	"example"	:	{	"a"	:	{	"j"	:	1	}	},"waitForSync":	true,	"limit":	2	}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Using Parameter: waitForSync and limit with new signature

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/remove-by-example

{"collection":	"products","example"	:	{	"a"	:	{	"j"	:	1	}	},"options":	{"waitForSync":	true,	"limit":	2}	}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
replaces the body of all documents of a collection that match an example

Replace documents by example 	PUT	/_api/simple/replace-by-example	

query: Contains the query.

This will find all documents in the collection that match the specified example object, and
replace the entire document body with the new value specified. Note that document
meta-attributes such as _id, _key, _from, _to etc. cannot be replaced.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to replace within.

example: An example document that all collection documents are compared against.

newValue: The replacement document that will get inserted in place of the "old"
documents.

options: an json object which can contain following attributes

waitForSync: if set to true, then all removal operations will instantly be synchronised
to disk. If this is not specified, then the collection's default sync behavior will be
applied.

limit: an optional value that determines how many documents to replace at most. If
limit is specified but is less than the number of documents in the collection, it is
undefined which of the documents will be replaced.

Note: the limit attribute is not supported on sharded collections. Using it will result in an
error. The options attributes waitForSync and limit can given yet without an ecapsulation
into a json object. but this may be deprecated in future versions of arango

Returns the number of documents that were replaced.

Return Codes

200: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/replace-by-example

{	"collection":	"products",	"example"	:	{	"a"	:	{	"j"	:	1	}	},	"newValue"	:	{"foo"	:	"bar"},	"limit"	:	3	}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Using new Signature for attributes WaitForSync and limit

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/replace-by-example

{	"collection":	"products",	"example"	:	{	"a"	:	{	"j"	:	1	}	},	"newValue"	:	{"foo"	:	"bar"},	"options":	{"limit"	:	3,		"waitForSync":	true		}}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
partially updates the body of all documents of a collection that match an example

Update documents by example 	PUT	/_api/simple/update-by-example	

query: Contains the query.

This will find all documents in the collection that match the specified example object, and
partially update the document body with the new value specified. Note that document
meta-attributes such as _id, _key, _from, _to etc. cannot be replaced.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to update within.

example: An example document that all collection documents are compared against.

newValue: A document containing all the attributes to update in the found
documents.

options: a json object wich can contains following attributes:

keepNull: This parameter can be used to modify the behavior when handling null
values. Normally, null values are stored in the database. By setting the keepNull
parameter to false, this behavior can be changed so that all attributes in data with
null values will be removed from the updated document.

waitForSync: if set to true, then all removal operations will instantly be synchronised
to disk. If this is not specified, then the collection's default sync behavior will be
applied.

limit: an optional value that determines how many documents to update at most. If
limit is specified but is less than the number of documents in the collection, it is
undefined which of the documents will be updated.

Note: the limit attribute is not supported on sharded collections. Using it will result in an
error.

Returns the number of documents that were updated.

Return Codes

200: is returned if the collection was updated successfully and waitForSync was true.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples using old syntax for options

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/update-by-example

{	"collection":	"products",	"example"	:	{	"a"	:	{	"j"	:	1	}	},	"newValue"	:	{	"a"	:	{	"j"	:	22	}	},	"limit"	:	3	}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
using new signature for options

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/update-by-example

{	"collection":	"products",	"example"	:	{	"a"	:	{	"j"	:	1	}	},	"newValue"	:	{	"a"	:	{	"j"	:	22	}	},	"options"	:		{	"limit"	:	3,	"waitForSync":	true	}		}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
returns the first document(s) of a collection

First document of a collection 	PUT	/_api/simple/first	

query: Contains the query.

This will return the first document(s) from the collection, in the order of insertion/update
time. When the count argument is supplied, the result will be a list of documents, with the
"oldest" document being first in the result list. If the count argument is not supplied, the
result is the "oldest" document of the collection, or null if the collection is empty.

The request body must be a JSON object with the following attributes:

collection: the name of the collection

count: the number of documents to return at most. Specifiying count is optional. If it
is not specified, it defaults to 1.

Note: this method is not supported for sharded collections with more than one shard.

Return Codes

200: is returned when the query was successfully executed.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

Retrieving the first n documents:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/first

{	"collection":	"products",	"count"	:	2	}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Retrieving the first document:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/first

{	"collection":	"products"	}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
returns the last document(s) of a collection

Last document of a collection 	PUT	/_api/simple/last	

query: Contains the query.

This will return the last documents from the collection, in the order of insertion/update
time. When the count argument is supplied, the result will be a list of documents, with the
"latest" document being first in the result list.

The request body must be a JSON object with the following attributes:

collection: the name of the collection

count: the number of documents to return at most. Specifiying count is optional. If it
is not specified, it defaults to 1.

If the count argument is not supplied, the result is the "latest" document of the collection,
or null if the collection is empty.

Note: this method is not supported for sharded collections with more than one shard.

Return Codes

200: is returned when the query was successfully executed.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

Retrieving the last n documents:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/last

{	"collection":	"products",	"count"	:	2	}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Retrieving the first document:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/last

{	"collection":	"products"	}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body

Collections

This is an introduction to ArangoDB's Http interface for collections.

Collection

A collection consists of documents. It is uniquely identified by its collection identifier. It
also has a unique name that clients should use to identify and access it. Collections can
be renamed. This will change the collection name, but not the collection identifier.
Collections have a type that is specified by the user when the collection is created. There
are currently two types: document and edge. The default type is document.

Collection Identifier

A collection identifier lets you refer to a collection in a database. It is a string value and is
unique within the database. Up to including ArangoDB 1.1, the collection identifier has
been a client's primary means to access collections. Starting with ArangoDB 1.2, clients
should instead use a collection's unique name to access a collection instead of its
identifier. ArangoDB currently uses 64bit unsigned integer values to maintain collection
ids internally. When returning collection ids to clients, ArangoDB will put them into a
string to ensure the collection id is not clipped by clients that do not support big integers.
Clients should treat the collection ids returned by ArangoDB as opaque strings when they
store or use it locally.

Note: collection ids have been returned as integers up to including ArangoDB 1.1

Collection Name

A collection name identifies a collection in a database. It is a string and is unique within
the database. Unlike the collection identifier it is supplied by the creator of the collection.
The collection name must consist of letters, digits, and the _ (underscore) and - (dash)
characters only. Please refer to Naming Conventions in ArangoDB for more information
on valid collection names.

Key Generator

ArangoDB allows using key generators for each collection. Key generators have the
purpose of auto-generating values for the _key attribute of a document if none was

HTTP Interface for Collections

specified by the user. By default, ArangoDB will use the traditional key generator. The
traditional key generator will auto-generate key values that are strings with ever-
increasing numbers. The increment values it uses are non-deterministic.

Contrary, the auto increment key generator will auto-generate deterministic key values.
Both the start value and the increment value can be defined when the collection is
created. The default start value is 0 and the default increment is 1, meaning the key
values it will create by default are:

1, 2, 3, 4, 5, ...

When creating a collection with the auto increment key generator and an increment of 5,
the generated keys would be:

1, 6, 11, 16, 21, ...

The basic operations (create, read, update, delete) for documents are mapped to the
standard HTTP methods (POST, GET, PUT, DELETE).

All collections in ArangoDB have an unique identifier and a unique name. ArangoDB
internally uses the collection's unique identifier to look up collections. This identifier
however is managed by ArangoDB and the user has no control over it. In order to allow
users use their own names, each collection also has a unique name, which is specified
by the user. To access a collection from the user perspective, the collection name should
be used, i.e.:

http://server:port/_api/collection/collection-name

For example: Assume that the collection identifier is 7254820 and the collection name is
demo, then the URL of that collection is:

http://localhost:8529/_api/collection/demo

Address of a Collection

creates a collection

Create collection 	POST	/_api/collection	

body: the body with name and options for a collection.

Creates an new collection with a given name. The request must contain an object with
the following attributes.

name: The name of the collection.

waitForSync (optional, default: false): If true then the data is synchronised to disk
before returning from a create or update of a document.

doCompact (optional, default is true): whether or not the collection will be
compacted.

journalSize (optional, default is a configuration parameter): The maximal size of a
journal or datafile. Note: This also limits the maximal size of a single object. Must be
at least 1MB.

isSystem (optional, default is false): If true, create a system collection. In this case
collection-name should start with an underscore. End users should normally create
non-system collections only. API implementors may be required to create system
collections in very special occasions, but normally a regular collection will do.

isVolatile (optional, default is false): If true then the collection data is kept in-memory
only and not made persistent. Unloading the collection will cause the collection data
to be discarded. Stopping or re-starting the server will also cause full loss of data in
the collection. Setting this option will make the resulting collection be slightly faster
than regular collections because ArangoDB does not enforce any synchronisation to
disk and does not calculate any CRC checksums for datafiles (as there are no
datafiles).

This option should threrefore be used for cache-type collections only, and not for data
that cannot be re-created otherwise.

keyOptions (optional) additional options for key generation. If specified, then

Creating and Deleting Collections

keyOptions should be a JSON array containing the following attributes (note: some
of them are optional):

type: specifies the type of the key generator. The currently available generators
are traditional and autoincrement.
allowUserKeys: if set to true, then it is allowed to supply own key values in the
_key attribute of a document. If set to false, then the key generator will solely be
responsible for generating keys and supplying own key values in the _key
attribute of documents is considered an error.
increment: increment value for autoincrement key generator. Not used for other
key generator types.
offset: initial offset value for autoincrement key generator. Not used for other key
generator types.

type (optional, default is 2): the type of the collection to create. The following values
for type are valid:

2: document collection
3: edges collection

numberOfShards (optional, default is 1): in a cluster, this value determines the
number of shards to create for the collection. In a single server setup, this option is
meaningless.

shardKeys (optional, default is ["_key"]): in a cluster, this attribute determines which
document attributes are used to determine the target shard for documents.
Documents are sent to shards based on the values of their shard key attributes. The
values of all shard key attributes in a document are hashed, and the hash value is
used to determine the target shard. Note: Values of shard key attributes cannot be
changed once set. This option is meaningless in a single server setup. Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection

{"name":"testCollectionBasics"}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

location:	/_db/_system/_api/collection/testCollectionBasics

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection

{"name":"testCollectionEdges","type":3}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

location:	/_db/_system/_api/collection/testCollectionEdges

show response body

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection

{"name":"testCollectionUsers","keyOptions":{"type":"autoincrement","increment":5,"allowUserKeys":true}}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

location:	/_db/_system/_api/collection/testCollectionUsers

show response body
deletes a collection

Delete collection 	DELETE	/_api/collection/{collection-name}	

collection-name: The name of the collection to delete.

Deletes a collection identified by collection-name.

If the collection was successfully deleted then, an object is returned with the following
attributes:

error: false

id: The identifier of the deleted collection.

Return Codes

400: If the collection-name is missing, then a HTTP 400 is returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Examples

Using an identifier:

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection/914167898

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body

Using a name:

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection/products1

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
truncates a collection

Truncate collection 	PUT	/_api/collection/{collection-name}/truncate	

collection-name: The name of the collection.

Removes all documents from the collection, but leaves the indexes intact.

Examples

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/collection/products/truncate

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body

returns a collection

Return information about a collection 	GET	/_api/collection/{collection-name}	

collection-name: The name of the collection.

The result is an object describing the collection with the following attributes:

id: The identifier of the collection.

name: The name of the collection.

status: The status of the collection as number.
1: new born collection
2: unloaded
3: loaded
4: in the process of being unloaded
5: deleted

Every other status indicates a corrupted collection.

type: The type of the collection as number.
2: document collection (normal case)
3: edges collection

Return Codes

404: If the collection-name is unknown, then a HTTP 404 is returned.

Read properties of a collection 	GET	/_api/collection/{collection-name}/properties	

collection-name: The name of the collection.

In addition to the above, the result will always contain the waitForSync, doCompact,
journalSize, and isVolatile attributes. This is achieved by forcing a load of the underlying
collection.

waitForSync: If true then creating or changing a document will wait until the data has

Getting Information about a Collection

been synchronised to disk.

doCompact: Whether or not the collection will be compacted.

journalSize: The maximal size setting for journals / datafiles.

isVolatile: If true then the collection data will be kept in memory only and ArangoDB
will not write or sync the data to disk.

In a cluster setup, the result will also contain the following attributes:

numberOfShards: the number of shards of the collection.

shardKeys: contains the names of document attributes that are used to determine
the target shard for documents. Return Codes

400: If the collection-name is missing, then a HTTP 400 is returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Examples

Using an identifier:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection/888674394/properties

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

location:	/_db/_system/_api/collection/products/properties

show response body
Using a name:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection/products/properties

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

location:	/_db/_system/_api/collection/products/properties

show response body

Return number of documents in a collection 	GET	/_api/collection/{collection-
name}/count	

collection-name: The name of the collection.

In addition to the above, the result also contains the number of documents. Note that this
will always load the collection into memory.

count: The number of documents inside the collection.

Return Codes

400: If the collection-name is missing, then a HTTP 400 is returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Examples

Requesting the number of documents:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection/products/count

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

location:	/_db/_system/_api/collection/products/count

show response body
Return statistics for a collection 	GET	/_api/collection/{collection-name}/figures	

collection-name: The name of the collection.

In addition to the above, the result also contains the number of documents and additional
statistical information about the collection. Note : This will always load the collection into
memory.

count: The number of documents currently present in the collection.

figures.alive.count: The number of curretly active documents in all datafiles and
journals of the collection. Documents that are contained in the write-ahead log only
are not reported in this figure.

figures.alive.size: The total size in bytes used by all active documents of the

collection. Documents that are contained in the write-ahead log only are not reported
in this figure.

figures.dead.count: The number of dead documents. This includes document
versions that have been deleted or replaced by a newer version. Documents deleted
or replaced that are contained the write-ahead log only are not reported in this figure.

figures.dead.size: The total size in bytes used by all dead documents.

figures.dead.deletion: The total number of deletion markers. Deletion markers only
contained in the write-ahead log are not reporting in this figure.

figures.datafiles.count: The number of datafiles.
figures.datafiles.fileSize: The total filesize of datafiles (in bytes).

figures.journals.count: The number of journal files.
figures.journals.fileSize: The total filesize of all journal files (in bytes).

figures.compactors.count: The number of compactor files.
figures.compactors.fileSize: The total filesize of all compactor files (in bytes).

figures.shapefiles.count: The number of shape files. This value is deprecated and
kept for compatibility reasons only. The value will always be 0 since ArangoDB 2.0
and higher.
figures.shapefiles.fileSize: The total filesize of the shape files. This value is
deprecated and kept for compatibility reasons only. The value will always be 0 in
ArangoDB 2.0 and higher.

figures.shapes.count: The total number of shapes used in the collection. This
includes shapes that are not in use anymore. Shapes that are contained in the write-
ahead log only are not reported in this figure.
figures.shapes.size: The total size of all shapes (in bytes). This includes shapes that
are not in use anymore. Shapes that are contained in the write-ahead log only are
not reported in this figure.

figures.attributes.count: The total number of attributes used in the collection. Note:
the value includes data of attributes that are not in use anymore. Attributes that are
contained in the write-ahead log only are not reported in this figure.
figures.attributes.size: The total size of the attribute data (in bytes). Note: the value
includes data of attributes that are not in use anymore. Attributes that are contained
in the write-ahead log only are not reported in this figure.

figures.indexes.count: The total number of indexes defined for the collection,
including the pre-defined indexes (e.g. primary index).

figures.indexes.size: The total memory allocated for indexes in bytes.

figures.maxTick: The tick of the last marker that was stored in a journal of the
collection. This might be 0 if the collection does not yet have a journal.

figures.uncollectedLogfileEntries: The number of markers in the write-ahead log for
this collection that have not been transferred to journals or datafiles.

journalSize: The maximal size of the journal in bytes.

Note: collection data that are stored in the write-ahead log only are not reported in the
results. When the write-ahead log is collected, documents might be added to journals and
datafiles of the collection, which may modify the figures of the collection.

Additionally, the filesizes of collection and index parameter JSON files are not reported.
These files should normally have a size of a few bytes each. Please also note that the
fileSize values are reported in bytes and reflect the logical file sizes. Some filesystems
may use optimisations (e.g. sparse files) so that the actual physical file size is somewhat
different. Directories and sub-directories may also require space in the file system, but
this space is not reported in the fileSize results.

That means that the figures reported do not reflect the actual disk usage of the collection
with 100% accuracy. The actual disk usage of a collection is normally slightly higher than
the sum of the reported fileSize values. Still the sum of the fileSize values can still be
used as a lower bound approximation of the disk usage.

Return Codes

400: If the collection-name is missing, then a HTTP 400 is returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Examples

Using an identifier and requesting the figures of the collection:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection/products/figures

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

location:	/_db/_system/_api/collection/products/figures

show response body
Return collection revision id 	GET	/_api/collection/{collection-name}/revision	

collection-name: The name of the collection.

In addition to the above, the result will also contain the collection's revision id. The
revision id is a server-generated string that clients can use to check whether data in a
collection has changed since the last revision check.

revision: The collection revision id as a string.

Return Codes

400: If the collection-name is missing, then a HTTP 400 is returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Examples

Retrieving the revision of a collection

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection/products/revision

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Return checksum for the collection 	GET	/_api/collection/{collection-name}/checksum	

collection-name: The name of the collection.

withRevisions: Whether or not to include document revision ids in the checksum
calculation.

withData: Whether or not to include document body data in the checksum
calculation.

Will calculate a checksum of the meta-data (keys and optionally revision ids) and

optionally the document data in the collection.

The checksum can be used to compare if two collections on different ArangoDB
instances contain the same contents. The current revision of the collection is returned too
so one can make sure the checksums are calculated for the same state of data.

By default, the checksum will only be calculated on the _key system attribute of the
documents contained in the collection. For edge collections, the system attributes _from
and _to will also be included in the calculation.

By setting the optional URL parameter withRevisions to true, then revision ids (_rev
system attributes) are included in the checksumming.

By providing the optional URL parameter withData with a value of true, the user-defined
document attributes will be included in the calculation too. Note: Including user-defined
attributes will make the checksumming slower.

The response is a JSON object with the following attributes:

checksum: The calculated checksum as a number.

revision: The collection revision id as a string.

Note: this method is not available in a cluster.

Return Codes

400: If the collection-name is missing, then a HTTP 400 is returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Examples

Retrieving the checksum of a collection:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection/products/checksum

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body

Retrieving the checksum of a collection including the collection data, but not the
revisions:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection/products/checksum?withRevisions=false&withData=true

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
returns all collections

reads all collections 	GET	/_api/collection	

excludeSystem: Whether or not system collections should be excluded from the
result.

Returns an object with an attribute collections containing a list of all collection
descriptions. The same information is also available in the names as hash map with the
collection names as keys.

By providing the optional URL parameter excludeSystem with a value of true, all system
collections will be excluded from the response.

Examples

Return information about all collections:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body

loads a collection

Load collection 	PUT	/_api/collection/{collection-name}/load	

collection-name: The name of the collection.

Loads a collection into memory. Returns the collection on success.

The request might optionally contain the following attribute:

count: If set, this controls whether the return value should include the number of
documents in the collection. Setting count to false may speed up loading a collection.
The default value for count is true.

On success an object with the following attributes is returned:

id: The identifier of the collection.

name: The name of the collection.

count: The number of documents inside the collection. This is only returned if the
count input parameters is set to true or has not been specified.

status: The status of the collection as number.

type: The collection type. Valid types are:
2: document collection
3: edges collection

Return Codes

400: If the collection-name is missing, then a HTTP 400 is returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Examples

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/collection/products/load

Modifying a Collection

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
unloads a collection

Unload collection 	PUT	/_api/collection/{collection-name}/unload	

collection-name:

Removes a collection from memory. This call does not delete any documents. You can
use the collection afterwards; in which case it will be loaded into memory, again. On
success an object with the following attributes is returned:

id: The identifier of the collection.

name: The name of the collection.

status: The status of the collection as number.

type: The collection type. Valid types are:
2: document collection
3: edges collection

Return Codes

400: If the collection-name is missing, then a HTTP 400 is returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Examples

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/collection/products/unload

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
changes a collection

Change properties of a collection 	PUT	/_api/collection/{collection-name}/properties	

collection-name: The name of the collection.

Changes the properties of a collection. Expects an object with the attribute(s)

waitForSync: If true then creating or changing a document will wait until the data has
been synchronised to disk.

journalSize: Size (in bytes) for new journal files that are created for the collection.

If returns an object with the attributes

id: The identifier of the collection.

name: The name of the collection.

waitForSync: The new value.

journalSize: The new value.

status: The status of the collection as number.

type: The collection type. Valid types are:
2: document collection
3: edges collection

Note: some other collection properties, such as type, isVolatile, numberOfShards or
shardKeys cannot be changed once a collection is created.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection/products/properties

{	

		"waitForSync"	:	true	

}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
renames a collection

Rename collection 	PUT	/_api/collection/{collection-name}/rename	

collection-name: The name of the collection to rename.

Renames a collection. Expects an object with the attribute(s)

name: The new name.

If returns an object with the attributes

id: The identifier of the collection.

name: The new name of the collection.

status: The status of the collection as number.

type: The collection type. Valid types are:
2: document collection
3: edges collection

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection/products1/rename

{	

		"name"	:	"newname"	

}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
rotates the journal of a collection

Rotate journal of a collection 	PUT	/_api/collection/{collection-name}/rotate	

collection-name: The name of the collection.

Rotates the journal of a collection. The current journal of the collection will be closed and
made a read-only datafile. The purpose of the rotate method is to make the data in the
file available for compaction (compaction is only performed for read-only datafiles, and
not for journals).

Saving new data in the collection subsequently will create a new journal file automatically
if there is no current journal.

If returns an object with the attributes

result: will be true if rotation succeeded

Note: This method is not available in a cluster.

Return Codes

400: If the collection currently has no journal, HTTP 500 is returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Examples

Rotating a journal:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection/products/rotate

{	

}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Rotating without a journal:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection/products/rotate

{	

}

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

show response body

Indexes

This is an introduction to ArangoDB's Http interface for indexes in general. There are
special sections for various index types.

Index

Indexes are used to allow fast access to documents. For each collection there is always
the primary index which is a hash index for the document key (_key attribute). This index
cannot be dropped or changed. Edge collections will also have an automatically created
edges index, which cannot be modified. This index provides quick access to documents
via the _from and _to attributes.

Most user-land indexes can be created by defining the names of the attributes which
should be indexed. Some index types allow indexing just one attribute (e.g. fulltext index)
whereas other index types allow indexing multiple attributes.

Indexing system attributes such as _id, _key, _from, and _to in user-defined indexes is
not supported by any index type. Manually creating an index that relies on any of these
attributes is unsupported.

Index Handle

An index handle uniquely identifies an index in the database. It is a string and consists of
a collection name and an index identifier separated by /. Geo Index: A geo index is used
to find places on the surface of the earth fast. Hash Index: A hash index is used to find
documents based on examples. A hash index can be created for one or multiple
document attributes. A hash index will only be used by queries if all indexed attributes are
present in the example or search query, and if all attributes are compared using the
equality (== operator). That means the hash index does not support range queries.

If the index is declared unique, then access to the indexed attributes should be fast. The
performance degrades if the indexed attribute(s) contain(s) only very few distinct values.

Edges Index

An edges index is automatically created for edge collections. It contains connections
between vertex documents and is invoked when the connecting edges of a vertex are

HTTP Interface for Indexes

queried. There is no way to explicitly create or delete edge indexes.

Skiplist Index:

A skiplist is used to find ranges of documents.

Fulltext Index:

A fulltext index can be used to find words, or prefixes of words inside documents. A
fulltext index can be set on one attribute only, and will index all words contained in
documents that have a textual value in this attribute. Only words with a (specifiable)
minimum length are indexed. Word tokenization is done using the word boundary
analysis provided by libicu, which is taking into account the selected language provided
at server start. Words are indexed in their lower-cased form. The index supports
complete match queries (full words) and prefix queries.

The basic operations (create, read, update, delete) for documents are mapped to the
standard HTTP methods (POST, GET, PUT, DELETE).

All indexes in ArangoDB have an unique handle. This index handle identifies an index
and is managed by ArangoDB. All indexes are found under the URI

http://server:port/_api/index/index-handle

For example: Assume that the index handle is demo/63563528 then the URL of that
index is:

http://localhost:8529/_api/index/demo/63563528

Address of an Index

returns an index

Read index 	GET	/_api/index/{index-handle}	

index-handle: The index-handle.

The result is an objects describing the index. It has at least the following attributes:

id: The identifier of the index.

All other attributes are type-dependent.

Return Codes

200: If the index exists, then a HTTP 200 is returned.

404: If the index does not exist, then a HTTP 404 is returned.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/index/products/0

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
creates an index

Create index 	POST	/_api/index	

collection: The collection name.

index-details:

Creates a new index in the collection collection. Expects an object containing the index
details.

The type of the index to be created must specified in the type attribute of the index

Working with Indexes using HTTP

details. Depending on the index type, additional other attributes may need to specified in
the request in order to create the index.

Most indexes (a notable exception being the cap constraint) require the list of attributes to
be indexed in the fields attribute of the index details. Depending on the index type, a
single attribute or multiple attributes may be indexed.

Indexing system attributes such as _id, _key, _from, and _to is not supported by any
index type. Manually creating an index that relies on any of these attributes is
unsupported.

Some indexes can be created as unique or non-unique variants. Uniqueness can be
controlled for most indexes by specifying the unique in the index details. Setting it to true
will create a unique index. Setting it to false or omitting the unique attribute will create a
non-unique index.

Note: The following index types do not support uniqueness, and using the unique
attribute with these types may lead to an error:

cap constraints
fulltext indexes

Note: Unique indexes on non-shard keys are not supported in a cluster.

Return Codes

200: If the index already exists, then an HTTP 200 is returned.

201: If the index does not already exist and could be created, then an HTTP 201 is
returned.

400: If an invalid index description is posted or attributes are used that the target
index will not support, then an HTTP 400 is returned.

404: If collection is unknown, then an HTTP 404 is returned.

deletes an index

Delete index 	DELETE	/_api/index/{index-handle}	

index-handle: The index handle.

Deletes an index with index-handle.

Return Codes

200: If the index could be deleted, then an HTTP 200 is returned.

404: If the index-handle is unknown, then an HTTP 404 is returned. Examples

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/index/products/1147148378

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
returns all indexes of a collection

Read all indexes of a collection 	GET	/_api/index	

collection: The collection name.

Returns an object with an attribute indexes containing a list of all index descriptions for
the given collection. The same information is also available in the identifiers as hash map
with the index handle as keys.

Examples

Return information about all indexes:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?collection=products

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body

creates a cap constraint

Create cap constraint 	POST	/_api/index	

collection: The collection name.

cap-constraint:

Creates a cap constraint for the collection collection-name, if it does not already exist.
Expects an object containing the index details.

type: must be equal to "cap".

size: The maximal number of documents for the collection. If specified, the value
must be greater than zero.

byteSize: The maximal size of the active document data in the collection (in bytes). If
specified, the value must be at least 16384.

Note: The cap constraint does not index particular attributes of the documents in a
collection, but limits the number of documents in the collection to a maximum value. The
cap constraint thus does not support attribute names specified in the fields attribute nor
uniqueness of any kind via the unique attribute.

It is allowed to specify either size or byteSize, or both at the same time. If both are
specified, then the automatic document removal will be triggered by the first non-met
constraint.

Return Codes

200: If the index already exists, then an HTTP 200 is returned.

201: If the index does not already exist and could be created, then an HTTP 201 is
returned.

400: If either size or byteSize contain invalid values, then an HTTP 400 is returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Working with Cap Constraints

Examples

Creating a cap constraint

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?collection=products

{"type":"cap","size":10}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body

If a suitable hash index exists, then /_api/simple/by-example will use this index to execute
a query-by-example.

creates a hash index

Create hash index 	POST	/_api/index	

collection-name: The collection name.

index-details:

Creates a hash index for the collection collection-name, if it does not already exist. The
call expects an object containing the index details.

type: must be equal to "hash".

fields: A list of attribute paths.

unique: If true, then create a unique index.

Note: unique indexes on non-shard keys are not supported in a cluster.

Return Codes

200: If the index already exists, then a HTTP 200 is returned.

201: If the index does not already exist and could be created, then a HTTP 201 is
returned.

400: If the collection already contains documents and you try to create a unique hash
index in such a way that there are documents violating the uniqueness, then a HTTP
400 is returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Examples

Creating an unique constraint:

Working with Hash Indexes

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?collection=products

{	"type":	"hash",	"unique"	:	true,	"fields"	:	["a",	"b"]	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
Creating a hash index:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?collection=products

{	"type":	"hash",	"unique"	:	false,	"fields"	:	["a",	"b"]	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
returns all documents of a collection matching a given example

Simple query by-example 	PUT	/_api/simple/by-example	

query: Contains the query.

This will find all documents matching a given example.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

example: The example document.

skip: The number of documents to skip in the query (optional).

limit: The maximal amount of documents to return. The skip is applied before the
limit restriction. (optional)

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

Matching an attribute:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/by-example

{	"collection":	"products",	"example"	:		{	"i"	:	1	}		}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
Matching an attribute which is a sub-document:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/by-example

{	"collection":	"products",	"example"	:	{	"a.j"	:	1	}	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
Matching an attribute within a sub-document:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/by-example

{	"collection":	"products",	"example"	:	{	"a"	:	{	"j"	:	1	}	}	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
returns one document of a collection matching a given example

Document matching an example 	PUT	/_api/simple/first-example	

query: Contains the query.

This will return the first document matching a given example.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

example: The example document.

Returns a result containing the document or HTTP 404 if no document matched the
example.

If more than one document in the collection matches the specified example, only one of
these documents will be returned, and it is undefined which of the matching documents is
returned.

Return Codes

200: is returned when the query was successfully executed.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

If a matching document was found:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/first-example

{	"collection":	"products",	"example"	:		{	"i"	:	1	}		}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
If no document was found:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/first-example

{	"collection":	"products",	"example"	:		{	"l"	:	1	}		}

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

show response body

If a suitable skip-list index exists, then /_api/simple/range will use this index to execute a
range query.

creates a skip-list

Create skip list 	POST	/_api/index	

collection-name: The collection name.

index-details:

Creates a skip-list index for the collection collection-name, if it does not already exist. The
call expects an object containing the index details.

type: must be equal to "skiplist".

fields: A list of attribute paths.

unique: If true, then create a unique index.

Note: unique indexes on non-shard keys are not supported in a cluster.

Return Codes

200: If the index already exists, then a HTTP 200 is returned.

201: If the index does not already exist and could be created, then a HTTP 201 is
returned.

400: If the collection already contains documents and you try to create a unique skip-
list index in such a way that there are documents violating the uniqueness, then a
HTTP 400 is returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Examples

Creating a skiplist:

Working with Skiplist Indexes

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?collection=products

{	"type":	"skiplist",	"unique"	:	false,	"fields"	:	["a",	"b"]	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body

creates a geo index

Create geo-spatial index 	POST	/_api/index	

collection: The collection name.

index-details:

Creates a geo-spatial index in the collection collection-name, if it does not already exist.
Expects an object containing the index details.

type: must be equal to "geo".

fields: A list with one or two attribute paths.

If it is a list with one attribute path location, then a geo-spatial index on all documents is
created using location as path to the coordinates. The value of the attribute must be a list
with at least two double values. The list must contain the latitude (first value) and the
longitude (second value). All documents, which do not have the attribute path or with
value that are not suitable, are ignored.

If it is a list with two attribute paths latitude and longitude, then a geo-spatial index on all
documents is created using latitude and longitude as paths the latitude and the longitude.
The value of the attribute latitude and of the attribute longitude must a double. All
documents, which do not have the attribute paths or which values are not suitable, are
ignored.

geoJson: If a geo-spatial index on a location is constructed and geoJson is true, then
the order within the list is longitude followed by latitude. This corresponds to the
format described in http://geojson.org/geojson-spec.html#positions

constraint: If constraint is true, then a geo-spatial constraint is created. The
constraint is a non-unique variant of the index. Note: It is also possible to set the
unique attribute instead of the constraint attribute.

ignoreNull: If a geo-spatial constraint is created and ignoreNull is true, then
documents with a null in location or at least one null in latitude or longitude are
ignored.

Working with Geo Indexes

http://geojson.org/geojson-spec.html#positions

Note: Unique indexes on non-shard keys are not supported in a cluster.

Return Codes

200: If the index already exists, then a HTTP 200 is returned.

201: If the index does not already exist and could be created, then a HTTP 201 is
returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Examples

Creating a geo index with a location attribute:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?collection=products

{	"type":	"geo",	"fields"	:	["b"]	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
Creating a geo index with latitude and longitude attributes:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?collection=products

{	"type":	"geo",	"fields"	:	["e",	"f"]	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
returns all documents of a collection near a given location

Near query 	PUT	/_api/simple/near	

query: Contains the query.

The default will find at most 100 documents near the given coordinate. The returned list is
sorted according to the distance, with the nearest document being first in the list. If there
are near documents of equal distance, documents are chosen randomly from this set

until the limit is reached.

In order to use the near operator, a geo index must be defined for the collection. This
index also defines which attribute holds the coordinates for the document. If you have
more then one geo-spatial index, you can use the geo field to select a particular index.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

latitude: The latitude of the coordinate.

longitude: The longitude of the coordinate.

distance: If given, the attribute key used to return the distance to the given
coordinate. (optional). If specified, distances are returned in meters.

skip: The number of documents to skip in the query. (optional)

limit: The maximal amount of documents to return. The skip is applied before the
limit restriction. The default is 100. (optional)

geo: If given, the identifier of the geo-index to use. (optional)

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

Without distance:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near

{	"collection":	"products",	"latitude"	:	0,	"longitude"	:	0,	"skip"	:	1,	"limit"	:	2	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
With distance:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near

{	"collection":	"products",	"latitude"	:	0,	"longitude"	:	0,	"skip"	:	1,	"limit"	:	3,	"distance"	:	"distance"	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
returns all documents of a collection within a given radius

Within query 	PUT	/_api/simple/within	

query: Contains the query.

This will find all documents within a given radius around the coordinate (latitude,
longitude). The returned list is sorted by distance.

In order to use the within operator, a geo index must be defined for the collection. This
index also defines which attribute holds the coordinates for the document. If you have
more then one geo-spatial index, you can use the geo field to select a particular index.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

latitude: The latitude of the coordinate.

longitude: The longitude of the coordinate.

radius: The maximal radius (in meters).

distance: If given, the attribute key used to return the distance to the given
coordinate. (optional). If specified, distances are returned in meters.

skip: The number of documents to skip in the query. (optional)

limit: The maximal amount of documents to return. The skip is applied before the
limit restriction. The default is 100. (optional)

geo: If given, the identifier of the geo-index to use. (optional)

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

Without distance:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near

{	"collection":	"products",	"latitude"	:	0,	"longitude"	:	0,	"skip"	:	1,	"limit"	:	2,	"radius"	:	500	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
With distance:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near

{	"collection":	"products",	"latitude"	:	0,	"longitude"	:	0,	"skip"	:	1,	"limit"	:	3,	"distance"	:	"distance",	"radius"	:	300	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body

If a fulltext index exists, then /_api/simple/fulltext will use this index to execute the
specified fulltext query.

creates a fulltext index

Create fulltext index 	POST	/_api/index	

collection-name: The collection name.

index-details:

Creates a fulltext index for the collection collection-name, if it does not already exist. The
call expects an object containing the index details.

type: must be equal to "fulltext".

fields: A list of attribute names. Currently, the list is limited to exactly one attribute, so
the value of fields should look like this for example: ["text"].

minLength: Minimum character length of words to index. Will default to a server-
defined value if unspecified. It is thus recommended to set this value explicitly when
creating the index.

Return Codes

200: If the index already exists, then a HTTP 200 is returned.

201: If the index does not already exist and could be created, then a HTTP 201 is
returned.

404: If the collection-name is unknown, then a HTTP 404 is returned.

Examples

Creating a fulltext index:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?collection=products

{	"type"	:	"fulltext",	"fields"	:	["text"]	}

Fulltext

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body
returns documents of a collection as a result of a fulltext query

Fulltext index query 	PUT	/_api/simple/fulltext	

query: Contains the query.

This will find all documents from the collection that match the fulltext query specified in
query.

In order to use the fulltext operator, a fulltext index must be defined for the collection and
the specified attribute.

The call expects a JSON object as body with the following attributes:

collection: The name of the collection to query.

attribute: The attribute that contains the texts.

query: The fulltext query.

skip: The number of documents to skip in the query (optional).

limit: The maximal amount of documents to return. The skip is applied before the
limit restriction. (optional)

index: The identifier of the fulltext-index to use.

Returns a cursor containing the result, see Http Cursor for details.

Return Codes

201: is returned if the query was executed successfully.

400: is returned if the body does not contain a valid JSON representation of a query.
The response body contains an error document in this case.

404: is returned if the collection specified by collection is unknown. The response
body contains an error document in this case.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/fulltext

{	"collection":	"products",	"attribute"	:	"text",	"query"	:	"word"	}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

show response body

Transactions

ArangoDB's transactions are executed on the server. Transactions can be initiated by
clients by sending the transaction description for execution to the server.

Transactions in ArangoDB do not offer separate BEGIN, COMMIT and ROLLBACK
operations as they are available in many other database products. Instead, ArangoDB
transactions are described by a Javascript function, and the code inside the Javascript
function will then be executed transactionally. At the end of the function, the transaction is
automatically committed, and all changes done by the transaction will be persisted. If an
exception is thrown during transaction execution, all operations performed in the
transaction are rolled back.

For a more detailed description of how transactions work in ArangoDB please refer to
Transactions.

execute a server-side transaction

Execute transaction 	POST	/_api/transaction	

body: Contains the collections and action.

The transaction description must be passed in the body of the POST request.

The following attributes must be specified inside the JSON object:

collections: contains the list of collections to be used in the transaction (mandatory).
collections must be a JSON array that can have the optional sub-attributes read and
write. read and write must each be either lists of collections names or strings with a
single collection name.

action: the actual transaction operations to be executed, in the form of stringified
Javascript code. The code will be executed on server side, with late binding. It is
thus critical that the code specified in action properly sets up all the variables it
needs. If the code specified in action ends with a return statement, the value
returned will also be returned by the REST API in the result attribute if the
transaction committed successfully.

HTTP Interface for Transactions

The following optional attributes may also be specified in the request:

waitForSync: an optional boolean flag that, if set, will force the transaction to write all
data to disk before returning.

lockTimeout: an optional numeric value that can be used to set a timeout for waiting
on collection locks. If not specified, a default value will be used. Setting lockTimeout
to 0 will make ArangoDB not time out waiting for a lock.

params: optional arguments passed to action.

If the transaction is fully executed and committed on the server, HTTP 200 will be
returned. Additionally, the return value of the code defined in action will be returned in the
result attribute.

For successfully committed transactions, the returned JSON object has the following
properties:

error: boolean flag to indicate if an error occurred (false in this case)

code: the HTTP status code

result: the return value of the transaction

If the transaction specification is either missing or malformed, the server will respond with
HTTP 400.

The body of the response will then contain a JSON object with additional error details.
The object has the following attributes:

error: boolean flag to indicate that an error occurred (true in this case)

code: the HTTP status code

errorNum: the server error number

errorMessage: a descriptive error message

If a transaction fails to commit, either by an exception thrown in the action code, or by an
internal error, the server will respond with an error. Any other errors will be returned with
any of the return codes HTTP 400, HTTP 409, or HTTP 500.

Return Codes

200: If the transaction is fully executed and committed on the server, HTTP 200 will
be returned.

400: If the transaction specification is either missing or malformed, the server will
respond with HTTP 400.

404: If the transaction specification contains an unknown collection, the server will
respond with HTTP 404.

500: Exceptions thrown by users will make the server respond with a return code of
HTTP 500

Examples

Executing a transaction on a single collection:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/transaction

{	

		"collections"	:	{	

				"write"	:	"products"	

		},	

		"action"	:	"function	()	{	var	db	=	require('internal').db;	db.products.save({});		return	db.products.count();	}"	

}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Executing a transaction using multiple collections:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/transaction

{	

		"collections"	:	{	

				"write"	:	[

						"products",	

						"materials"	

]	

		},	

		"action"	:	"function	()	{var	db	=	require('internal').db;db.products.save({});db.materials.save({});return	'worked!';}"	

}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Aborting a transaction due to an internal error:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/transaction

{	

		"collections"	:	{	

				"write"	:	"products"	

		},	

		"action"	:	"function	()	{var	db	=	require('internal').db;db.products.save({	_key:	'abc'});db.products.save({	_key:	'abc'});}"	

}

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

show response body
Aborting a transaction by explicitly throwing an exception:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/transaction

{	

		"collections"	:	{	

				"read"	:	"products"	

		},	

		"action"	:	"function	()	{	throw	'doh!';	}"	

}

HTTP/1.1	500	Internal	Error

content-type:	application/json;	charset=utf-8

show response body
Referring to a non-existing collection:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/transaction

{	

		"collections"	:	{	

				"read"	:	"products"	

		},	

		"action"	:	"function	()	{	return	true;	}"	

}

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

show response body

This chapter describes the http interface for the multi-collection graph module. It allows
you to define a graph that is spread across several edge and document collections. This
allows you to structure your models in line with your domain and group them logically in
collections and giving you the power to query them in the same graph queries. There is
no need to include the referenced collections within the query, this module will handle it
for you.

A Graph consists of vertices and edges. Edges are stored as documents in edge
collections. In general a vertex is stored in a document collection. The type of edges that
are allowed within a graph is defined by edge definitions: An edge definition is a
combination of a edge collection, and the vertex collections that the edges within this
collection can connect. A graph can have an arbitrary number of edge definitions and
arbitrary many additional vertex collections.

Warning

The underlying collections of the graph are still accessible using the standard methods
for collections. However the graph module adds an additional layer on top of these
collections giving you the following guarantees:

All modifications are executed transactional
If you delete a vertex all edges will be deleted, you will never have loose ends
If you insert an edge it is checked if the edge matches the definition, your edge
collections will only contain valid edges

These guarantees are lost if you access the collections in any other way than the graph
module or AQL, so if you delete documents from your vertex collections directly, the
edges will be untouched.

General Graphs

First Steps with Graphs

The graph module provides functions dealing with graph structures.

First Steps with Graphs

A Graph consists of vertices and edges. Edges are stored as documents in edge
collections. A vertex can be a document of a document collection or of an edge collection
(so edges can be used as vertices). Which collections are used within a graph is defined
via edge definitions. A graph can contain more than one edge definition, at least one is
needed.

Lists all graphs known to the graph module.

List all graphs 	GET	/_api/gharial	

Lists all graph names stored in this database.ssss

Return Codes

200: Returned if the module is available and the graphs could be listed.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial

HTTP/1.1	200	OK

content-type:	application/json

show response body
Create a new graph in the graph module.

Create a graph 	POST	/_api/gharial	

The creation of a graph requires the name of the graph and a definition of its edges.

name: Name of the graph.

edgeDefinitions: A list of definitions for the edges, see edge definitions.

Manage your graphs

orphanCollections: A list of additional vertex collections.

Return Codes

201: Returned if the graph could be listed created. The body contains the graph
configuration that has been stored.

409: Returned if there is a conflict storing the graph. This can occur either if a graph
with this name is already stored, or if there is one edge definition with a the same
edge collection but a different signature used in any other graph.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial

{	

		"name"	:	"myGraph",	

		"edgeDefinitions"	:	[

				{	

						"collection"	:	"edges",	

						"from"	:	[

								"startVertices"	

],	

						"to"	:	[

								"endVertices"	

]	

				}	

]	

}

HTTP/1.1	201	Created

content-type:	application/json

etag:	1292310618

show response body
Get a graph from the graph module.

Get a graph 	GET	/_api/gharial/graph-name	

Gets a graph from the collection _graphs. Returns the definition content of this graph.

graph-name: The name of the graph.

Return Codes

200: Returned if the graph could be found.

404: Returned if no graph with this name could be found.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/myGraph

HTTP/1.1	200	OK

content-type:	application/json

etag:	1293949018

show response body
Drop a graph 	DELETE	/_api/gharial/graph-name	

Removes a graph from the collection _graphs.

graph-name: The name of the graph.

dropCollections: Drop collections of this graph as well. Collections will only be
dropped if they are not used in other graphs.

Return Codes

200: Returned if the graph could be dropped.

404: Returned if no graph with this name could be found.

Examples

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social

HTTP/1.1	200	OK

content-type:	application/json

show response body
Lists all vertex collections used in this graph.

List vertex collections 	GET	/_api/gharial/graph-name/vertex	

Lists all vertex collections within this graph.

graph-name: The name of the graph.

Return Codes

200: Returned if the collections could be listed.

404: Returned if no graph with this name could be found.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/vertex

HTTP/1.1	200	OK

content-type:	application/json

show response body
Add an additional vertex collection to the graph.

Add vertex collection 	POST	/_api/gharial/graph-name/vertex	

Adds a vertex collection to the set of collections of the graph. If the collection does not
exist, it will be created.

graph-name: The name of the graph.

Return Codes

201: Returned if the edge collection could be added successfully.

404: Returned if no graph with this name could be found.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/vertex

{	

		"collection"	:	"otherVertices"	

}

HTTP/1.1	201	Created

content-type:	application/json

etag:	1304500314

show response body

Remove a vertex collection form the graph.

Remove vertex collection 	DELETE	/_api/gharial/graph-name/vertex/collection-name	

Removes a vertex collection from the graph and optionally deletes the collection, if it is
not used in any other graph.

graph-name: The name of the graph.

collection-name: The name of the vertex collection.

dropCollection: Drop the collection as well. Collection will only be dropped if it is not
used in other graphs.

Return Codes

200: Returned if the vertex collection was removed from the graph successfully.

400: Returned if the vertex collection is still used in an edge definition. In this case it
cannot be removed from the graph yet, it has to be removed from the edge definition
first.

404: Returned if no graph with this name could be found.

Examples

You can remove vertex collections that are not used in any edge collection:

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/vertex/otherVertices

HTTP/1.1	200	OK

content-type:	application/json

etag:	1311447130

show response body
You cannot remove vertex collections that are used in edge collections:

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/vertex/male

HTTP/1.1	400	Bad	Request

content-type:	application/json

show response body
Lists all edge definitions

List edge definitions 	GET	/_api/gharial/graph-name/edge	

Lists all edge collections within this graph.

graph-name: The name of the graph.

Return Codes

200: Returned if the collections could be listed.

404: Returned if no graph with this name could be found.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/edge

HTTP/1.1	200	OK

content-type:	application/json

show response body
Add a new edge definition to the graph

Add edge definition 	POST	/_api/gharial/graph-name/edge	

Adds an additional edge definition to the graph. This edge definition has to contain a
collection a list of each from and to vertex collections. A edge definition can only be
added if this definition is either not used in any other graph, or it is used with exactly the
same definition. It is not possible to store a definition "e" from "v1" to "v2" in the one
graph, and "e" from "v2" to "v1" in the other graph.

graph-name: The name of the graph.

collection: The name of the edge collection to be used.

from: One or many vertex collections that can contain source vertices.

to: One or many edge collections that can contain target vertices.

Return Codes

200: Returned if the definition could be added successfully.

400: Returned if the defininition could not be added, the edge collection is used in an
other graph with a different signature.

404: Returned if no graph with this name could be found.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/edge

{	

		"collection"	:	"lives_in",	

		"from"	:	[

				"female",	

				"male"	

],	

		"to"	:	[

				"city"	

]	

}

HTTP/1.1	201	Created

content-type:	application/json

etag:	1321801818

show response body
Replace an existing edge definition

Replace an edge definition 	POST	/_api/gharial/graph-name/edge/definition-name	

Change one specific edge definition. This will modify all occurrences of this definition in
all graphs known to your database.

graph-name: The name of the graph.

definition-name: The name of the edge collection used in the definition.

collection: The name of the edge collection to be used.

from: One or many vertex collections that can contain source vertices.

to: One or many edge collections that can contain target vertices.

Return Codes

200: Returned if the edge definition could be replaced.

400: Returned if no edge definition with this name is found in the graph.

404: Returned if no graph with this name could be found.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/edge/relation

{	

		"collection"	:	"relation",	

		"from"	:	[

				"female",	

				"male",	

				"animal"	

],	

		"to"	:	[

				"female",	

				"male",	

				"animal"	

]	

}

HTTP/1.1	200	OK

content-type:	application/json

etag:	1327044698

show response body
Remove an edge definition form the graph

Remove an edge definition from the graph 	DELETE	/_api/gharial/graph-
name/edge/definition-name	

Remove one edge definition from the graph. This will only remove the edge collection,
the vertex collections remain untouched and can still be used in your queries.

graph-name: The name of the graph.

definition-name: The name of the edge collection used in the definition.

dropCollection: Drop the collection as well. Collection will only be dropped if it is not
used in other graphs.

Return Codes

200: Returned if the edge definition could be removed from the graph.

400: Returned if no edge definition with this name is found in the graph.

404: Returned if no graph with this name could be found.

Examples

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/edge/relation

HTTP/1.1	200	OK

content-type:	application/json

etag:	1331894362

show response body

Create a vertex 	POST	/system/gharial/graph-name/vertex/collection-name	

Adds a vertex to the given collection.

graph-name: The name of the graph.

collection-name: The name of the vertex collection the vertex belongs to.

waitForSync: Define if the request should wait until synced to disk.

The body has to be the JSON object to be stored.

Return Codes

201: Returned if the vertex could be added and waitForSync is true.

202: Returned if the request was successful but waitForSync is false.

404: Returned if no graph or no vertex collection with this name could be found.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/vertex/male

{	

		"name"	:	"Francis"	

}

HTTP/1.1	202	Accepted

content-type:	application/json

etag:	1338710106

show response body
Get a vertex 	GET	/system/gharial/graph-name/vertex/collection-name/vertex-key	

Gets a vertex from the given collection.

graph-name: The name of the graph.

Handling Vertices

collection-name: The name of the vertex collection the vertex belongs to.

vertex-key: The _key attribute of the vertex.

if-match: If the "If-Match" header is given, then it must contain exactly one etag. The
document is returned, if it has the same revision as the given etag. Otherwise a
HTTP 412 is returned. As an alternative you can supply the etag in an attribute rev in
the URL.

Return Codes

200: Returned if the vertex could be found.

404: Returned if no graph with this name, no vertex collection or no vertex with this
id could be found.

412: Returned if if-match header is given, but the documents revision is different.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/vertex/female/alice

HTTP/1.1	200	OK

content-type:	application/json

etag:	1340676186

show response body
Modify a vertex 	PATCH	/system/gharial/graph-name/vertex/collection-name/vertex-key	

Updates the data of the specific vertex in the collection.

graph-name: The name of the graph.

collection-name: The name of the vertex collection the vertex belongs to.

vertex-key: The _key attribute of the vertex.

waitForSync: Define if the request should wait until synced to disk.

keepNull: Define if values set to null should be stored. By default the key is removed
from the document.

if-match: If the "If-Match" header is given, then it must contain exactly one etag. The
document is updated, if it has the same revision as the given etag. Otherwise a
HTTP 412 is returned. As an alternative you can supply the etag in an attribute rev in
the URL.

The body has to contain a JSON object containing exactly the attributes that should be
replaced.

Return Codes

200: Returned if the vertex could be updated.

202: Returned if the request was successful but waitForSync is false.

404: Returned if no graph with this name, no vertex collection or no vertex with this
id could be found.

412: Returned if if-match header is given, but the documents revision is different.

Examples

shell>	curl	-X	PATCH	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/vertex/female/alice

{	

		"age"	:	26	

}

HTTP/1.1	202	Accepted

content-type:	application/json

etag:	1351882842

show response body
Replace a vertex 	PUT	/system/gharial/graph-name/vertex/collection-name/vertex-key	

Replaces the data of a vertex in the collection.

graph-name: The name of the graph.

collection-name: The name of the vertex collection the vertex belongs to.

vertex-key: The _key attribute of the vertex.

waitForSync: Define if the request should wait until synced to disk.

if-match: If the "If-Match" header is given, then it must contain exactly one etag. The
document is updated, if it has the same revision as the given etag. Otherwise a
HTTP 412 is returned. As an alternative you can supply the etag in an attribute rev in
the URL.

The body has to be the JSON object to be stored.

Return Codes

200: Returned if the vertex could be replaced.

202: Returned if the request was successful but waitForSync is false.

404: Returned if no graph with this name, no vertex collection or no vertex with this
id could be found.

412: Returned if if-match header is given, but the documents revision is different.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/vertex/female/alice

{	

		"name"	:	"Alice	Cooper",	

		"age"	:	26	

}

HTTP/1.1	202	Accepted

content-type:	application/json

etag:	1347360858

show response body
Remove a vertex 	DELETE	/system/gharial/graph-name/vertex/collection-name/vertex-key	

Removes a vertex from the collection.

graph-name: The name of the graph.

collection-name: The name of the vertex collection the vertex belongs to.

vertex-key: The _key attribute of the vertex.

waitForSync: Define if the request should wait until synced to disk.

if-match: If the "If-Match" header is given, then it must contain exactly one etag. The
document is updated, if it has the same revision as the given etag. Otherwise a
HTTP 412 is returned. As an alternative you can supply the etag in an attribute rev in
the URL.

Return Codes

200: Returned if the vertex could be removed.

202: Returned if the request was successful but waitForSync is false.

404: Returned if no graph with this name, no vertex collection or no vertex with this
id could be found.

412: Returned if if-match header is given, but the documents revision is different.

Examples

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/vertex/female/alice

HTTP/1.1	202	Accepted

content-type:	application/json

show response body

Create an edge 	POST	/system/gharial/graph-name/edge/collection-name	

Creates a new edge in the collection. Within the body the has to contain a _from and _to
value referencing to valid vertices in the graph. Furthermore the edge has to be valid in
the definition of this edge collection.

graph-name: The name of the graph.

collection-name: The name of the edge collection the edge belongs to.

waitForSync: Define if the request should wait until synced to disk.

_from:

_to:

The body has to be the JSON object to be stored.

Return Codes

201: Returned if the edge could be created.

202: Returned if the request was successful but waitForSync is false.

404: Returned if no graph with this name, no edge collection or no edge with this id
could be found.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/edge/relation

{	

		"type"	:	"friend",	

		"_from"	:	"female/alice",	

		"_to"	:	"female/diana"	

}

HTTP/1.1	202	Accepted

content-type:	application/json

etag:	1361254490

Handling Edges

show response body
Get an edge 	GET	/system/gharial/graph-name/edge/collection-name/edge-key	

Gets an edge from the given collection.

graph-name: The name of the graph.

collection-name: The name of the edge collection the edge belongs to.

edge-key: The _key attribute of the vertex.

if-match: If the "If-Match" header is given, then it must contain exactly one etag. The
document is returned, if it has the same revision as the given etag. Otherwise a
HTTP 412 is returned. As an alternative you can supply the etag in an attribute rev in
the URL.

Return Codes

200: Returned if the edge could be found.

404: Returned if no graph with this name, no edge collection or no edge with this id
could be found.

412: Returned if if-match header is given, but the documents revision is different.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/edge/relation/aliceAndBob

HTTP/1.1	200	OK

content-type:	application/json

etag:	1364269146

show response body
Modify an edge 	PATCH	/system/gharial/graph-name/edge/collection-name/edge-key	

Updates the data of the specific edge in the collection.

graph-name: The name of the graph.

collection-name: The name of the edge collection the edge belongs to.

edge-key: The _key attribute of the vertex.

waitForSync: Define if the request should wait until synced to disk.

keepNull: Define if values set to null should be stored. By default the key is removed
from the document.

The body has to be a JSON object containing the attributes to be updated.

Return Codes

200: Returned if the edge could be updated.

202: Returned if the request was successful but waitForSync is false.

404: Returned if no graph with this name, no edge collection or no edge with this id
could be found.

Examples

shell>	curl	-X	PATCH	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/edge/relation/aliceAndBob

{	

		"since"	:	"01.01.2001"	

}

HTTP/1.1	202	Accepted

content-type:	application/json

etag:	1374165082

show response body
Replace an edge 	PUT	/system/gharial/graph-name/edge/collection-name/edge-key	

Replaces the data of an edge in the collection.

graph-name: The name of the graph.

collection-name: The name of the edge collection the edge belongs to.

edge-key: The _key attribute of the vertex.

waitForSync: Define if the request should wait until synced to disk.

if-match: If the "If-Match" header is given, then it must contain exactly one etag. The

document is updated, if it has the same revision as the given etag. Otherwise a
HTTP 412 is returned. As an alternative you can supply the etag in an attribute rev in
the URL.

The body has to be the JSON object to be stored.

Return Codes

200: Returned if the edge could be replaced.

202: Returned if the request was successful but waitForSync is false.

404: Returned if no graph with this name, no edge collection or no edge with this id
could be found.

412: Returned if if-match header is given, but the documents revision is different.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/edge/relation/aliceAndBob

{	

		"type"	:	"divorced"	

}

HTTP/1.1	202	Accepted

content-type:	application/json

etag:	1369708634

show response body
Remove an edge 	DELETE	/system/gharial/graph-name/edge/collection-name/edge-key	

Removes an edge from the collection.

graph-name: The name of the graph.

collection-name: The name of the edge collection the edge belongs to.

edge-key: The _key attribute of the vertex.

waitForSync: Define if the request should wait until synced to disk.

if-match: If the "If-Match" header is given, then it must contain exactly one etag. The
document is updated, if it has the same revision as the given etag. Otherwise a

HTTP 412 is returned. As an alternative you can supply the etag in an attribute rev in
the URL.

Return Codes

200: Returned if the edge could be removed.

202: Returned if the request was successful but waitForSync is false.

404: Returned if no graph with this name, no edge collection or no edge with this id
could be found.

412: Returned if if-match header is given, but the documents revision is different.

Examples

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial/social/edge/relation/aliceAndBob

HTTP/1.1	202	Accepted

content-type:	application/json

show response body

Warning Deprecated

This api is deprecated and will be removed soon. Please use General Graphs instead.

	POST	/_api/graph	(create graph)

Query parameters

	waitForSync	(boolean,optional)	

Wait until document has been sync to disk.

Body parameters

	graph	(json,required)	

The call expects a JSON hash array as body with the following attributes: _key: The
name of the new graph. vertices: The name of the vertices collection. edges: The name
of the egde collection.

Description

Creates a new graph. Returns an object with an attribute graph containing a list of all
graph properties.

Return codes

	HTTP	201	

is returned if the graph was created successfully and waitForSync was true.

	HTTP	202	

is returned if the graph was created successfully and waitForSync was false.

	HTTP	400	

is returned if it failed. The response body contains an error document in this case.

Examples

HTTP Interface for Graphs

unix>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/graph/

{"_key":"graph","vertices":"vertices","edges":"edges"}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

etag:	103998433

{	

		"graph"	:	{	

				"_id"	:	"_graphs/graph",	

				"_rev"	:	"103998433",	

				"_key"	:	"graph",	

				"edges"	:	"edges",	

				"vertices"	:	"vertices"	

		},	

		"error"	:	false,	

		"code"	:	201	

}

	GET	/_api/graph/graph-name	(get the properties of a specific or all graphs)

URL parameters

	graph-name	(string,optional)	

The name of the graph.

HTTP header parameters

	If-None-Match	(string,optional)	

If graph-name is specified, then this header can be used to check whether a specific
graph has changed or not. If the "If-None-Match" header is given, then it must contain
exactly one etag. The document is returned if it has a different revision than the given
etag. Otherwise a HTTP 304 is returned.

	If-Match	(string,optional)	

If graph-name is specified, then this header can be used to check whether a specific
graph has changed or not. If the "If-Match" header is given, then it must contain exactly
one etag. The document is returned, if it has the same revision ad the given etag.
Otherwise a HTTP 412 is returned. As an alternative you can supply the etag in an
attribute rev in the URL.

Description

If graph-name is specified, returns an object with an attribute graph containing a JSON

hash with all properties of the specified graph.

If graph-name is not specified, returns a list of graph objects.

Return codes

	HTTP	200	

is returned if the graph was found (in case graph-name was specified) or the list of
graphs was assembled successfully (in case graph-name was not specified).

	HTTP	404	

is returned if the graph was not found. This response code may only be returned if graph-
name is specified in the request. The response body contains an error document in this
case.

	HTTP	304	

"If-None-Match" header is given and the current graph has not a different version. This
response code may only be returned if graph-name is specified in the request.

	HTTP	412	

"If-Match" header or rev is given and the current graph has a different version. This
response code may only be returned if graph-name is specified in the request.

Examples

get graph by name

unix>	curl	--dump	-	http://localhost:8529/_api/graph/graph

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

etag:	105440225

{	

		"graph"	:	{	

				"_id"	:	"_graphs/graph",	

				"_rev"	:	"105440225",	

				"_key"	:	"graph",	

				"edges"	:	"edges",	

				"vertices"	:	"vertices"	

		},	

		"error"	:	false,	

		"code"	:	200	

}

get all graphs

unix>	curl	--dump	-	http://localhost:8529/_api/graph

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

{	

		"graphs"	:	[

				{	

						"_id"	:	"_graphs/graph1",	

						"_rev"	:	"106947553",	

						"_key"	:	"graph1",	

						"edges"	:	"edges1",	

						"vertices"	:	"vertices1"	

				},	

				{	

						"_id"	:	"_graphs/graph2",	

						"_rev"	:	"108192737",	

						"_key"	:	"graph2",	

						"edges"	:	"edges2",	

						"vertices"	:	"vertices2"	

				}	

],	

		"error"	:	false,	

		"code"	:	200	

}

	DELETE	/_api/graph/graph-name	(delete graph)

URL parameters

	graph-name	(string,required)	

The name of the graph

HTTP header parameters

	If-Match	(string,optional)	

If the "If-Match" header is given, then it must contain exactly one etag. The document is
returned, if it has the same revision ad the given etag. Otherwise a HTTP 412 is returned.
As an alternative you can supply the etag in an attribute rev in the URL.

Description

Deletes graph, edges and vertices

Return codes

	HTTP	200	

is returned if the graph was deleted and waitForSync was true.

	HTTP	202	

is returned if the graph was deleted and waitForSync was false.

	HTTP	404	

is returned if the graph was not found. The response body contains an error document in
this case.

	HTTP	412	

"If-Match" header or rev is given and the current graph has a different version

Examples

delete graph by name

unix>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/graph/graph

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

{	

		"deleted"	:	true,	

		"error"	:	false,	

		"code"	:	200	

}

	POST	/_api/graph/graph-name/vertex-name	(create vertex)

URL parameters

	graph-name	(string,required)	

The name of the graph

	vertex-name	(string,required)	

The name of the vertex

Query parameters

	waitForSync	(boolean,optional)	

Wait until document has been sync to disk.

Body parameters

	vertex	(json,required)	

The call expects a JSON hash array as body with the vertex properties: _key: The name
of the vertex (optional). further optional attributes.

Description

Creates a vertex in a graph. Returns an object with an attribute vertex containing a list of
all vertex properties.

Return codes

	HTTP	201	

is returned if the graph was created successfully and waitForSync was true.

	HTTP	202	

is returned if the graph was created successfully and waitForSync was false.

Examples

Vertex

unix>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/graph/graph/vertex

{"_key":"v1","optional1":"val1"}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	112518113

{	

		"vertex"	:	{	

				"_id"	:	"vertices/v1",	

				"_rev"	:	"112518113",	

				"_key"	:	"v1",	

				"optional1"	:	"val1"	

		},	

		"error"	:	false,	

		"code"	:	202	

}

	GET	/_api/graph/graph-name/vertex-name	(get vertex)

URL parameters

	graph-name	(string,required)	

The name of the graph

	vertex-name	(string,required)	

The name of the vertex

Query parameters

	rev	(string,optional)	

Revision of a vertex

HTTP header parameters

	If-None-Match	(string,optional)	

If the "If-None-Match" header is given, then it must contain exactly one etag. The
document is returned, if it has a different revision than the given etag. Otherwise a HTTP
304 is returned.

	If-Match	(string,optional)	

If the "If-Match" header is given, then it must contain exactly one etag. The document is

returned, if it has the same revision ad the given etag. Otherwise a HTTP 412 is returned.
As an alternative you can supply the etag in an attribute rev in the URL.

Description

Returns an object with an attribute vertex containing a list of all vertex properties.

Return codes

	HTTP	200	

is returned if the graph was found

	HTTP	304	

"If-Match" header is given and the current graph has not a different version

	HTTP	404	

is returned if the graph or vertex was not found. The response body contains an error
document in this case.

	HTTP	412	

"If-None-Match" header or rev is given and the current graph has a different version

Examples

get vertex properties by name

unix>	curl	--dump	-	http://localhost:8529/_api/graph/graph/vertex/v1

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

etag:	115532769

{	

		"vertex"	:	{	

				"_id"	:	"vertices/v1",	

				"_rev"	:	"115532769",	

				"_key"	:	"v1",	

				"optional1"	:	"val1"	

		},	

		"error"	:	false,	

		"code"	:	200	

}

	PUT	/_api/graph/graph-name/vertex-name	(update vertex)

URL parameters

	graph-name	(string,required)	

The name of the graph

	vertex-name	(string,required)	

The name of the vertex

Query parameters

	waitForSync	(boolean,optional)	

Wait until vertex has been sync to disk.

	rev	(string,optional)	

Revision of a vertex

Body parameters

	vertex	(json,required)	

The call expects a JSON hash array as body with the new vertex properties.

HTTP header parameters

	if-match	(string,optional)	

If the "If-Match" header is given, then it must contain exactly one etag. The document is
updated, if it has the same revision ad the given etag. Otherwise a HTTP 412 is returned.
As an alternative you can supply the etag in an attribute rev in the URL.

Description

Replaces the vertex properties. Returns an object with an attribute vertex containing a list
of all vertex properties.

Return codes

	HTTP	201	

is returned if the vertex was updated successfully and waitForSync was true.

	HTTP	202	

is returned if the vertex was updated successfully and waitForSync was false.

	HTTP	404	

is returned if the graph or the vertex was not found. The response body contains an error
document in this case.

	HTTP	412	

"If-Match" header or rev is given and the current vertex has a different version

Examples

unix>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/graph/graph/vertex/v1

{"optional1":"val2"}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	120579041

{	

		"vertex"	:	{	

				"_id"	:	"vertices/v1",	

				"_rev"	:	"120579041",	

				"_key"	:	"v1",	

				"optional1"	:	"val2"	

		},	

		"error"	:	false,	

		"code"	:	202	

}

	PATCH	/_api/graph/graph-name/vertex-name	(update vertex)

URL parameters

	graph-name	(string,required)	

The name of the graph

	vertex-name	(string,required)	

The name of the vertex

Query parameters

	waitForSync	(boolean,optional)	

Wait until vertex has been sync to disk.

	rev	(string,optional)	

Revision of a vertex

	keepNull	(boolean,optional)	

Modify the behavior of the patch command to remove any attribute

Body parameters

	graph	(json,required)	

The call expects a JSON hash array as body with the properties to patch.

HTTP header parameters

	if-match	(string,optional)	

If the "If-Match" header is given, then it must contain exactly one etag. The document is
updated, if it has the same revision ad the given etag. Otherwise a HTTP 412 is returned.
As an alternative you can supply the etag in an attribute rev in the URL.

Description

Partially updates the vertex properties. Setting an attribute value to null in the patch
document will cause a value of null be saved for the attribute by default. If the intention is
to delete existing attributes with the patch command, the URL parameter keepNull can be
used with a value of false. This will modify the behavior of the patch command to remove
any attributes from the existing document that are contained in the patch document with
an attribute value of null.

Returns an object with an attribute vertex containing a list of all vertex properties.

Return codes

	HTTP	201	

is returned if the vertex was updated successfully and waitForSync was true.

	HTTP	202	

is returned if the vertex was updated successfully and waitForSync was false.

	HTTP	404	

is returned if the graph or the vertex was not found. The response body contains an error
document in this case.

	HTTP	412	

"If-Match" header or rev is given and the current vertex has a different version

Examples

unix>	curl	-X	PATCH	--data-binary	@-	--dump	-	http://localhost:8529/_api/graph/graph/vertex/v1

{"optional1":"vertexPatch"}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	123659233

{	

		"vertex"	:	{	

				"_id"	:	"vertices/v1",	

				"_rev"	:	"123659233",	

				"_key"	:	"v1",	

				"optional1"	:	"vertexPatch"	

		},	

		"error"	:	false,	

		"code"	:	202	

}

unix>	curl	-X	PATCH	--data-binary	@-	--dump	-	http://localhost:8529/_api/graph/graph/vertex/v1

{"optional1":null}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	124117985

{	

		"vertex"	:	{	

				"_id"	:	"vertices/v1",	

				"_rev"	:	"124117985",	

				"_key"	:	"v1",	

				"optional1"	:	null	

		},	

		"error"	:	false,	

		"code"	:	202	

}

	DELETE	/_api/graph/graph-name/vertex-name	(delete vertex)

URL parameters

	graph-name	(string,required)	

The name of the graph

	vertex-name	(string,required)	

The name of the vertex

Query parameters

	waitForSync	(boolean,optional)	

Wait until document has been sync to disk.

	rev	(string,optional)	

Revision of a vertex

HTTP header parameters

	If-Match	(string,optional)	

If the "If-Match" header is given, then it must contain exactly one etag. The document is
returned, if it has the same revision ad the given etag. Otherwise a HTTP 412 is returned.
As an alternative you can supply the etag in an attribute rev in the URL.

Description

Deletes vertex and all in and out edges of the vertex

Return codes

	HTTP	200	

is returned if the vertex was deleted and waitForSync was true.

	HTTP	202	

is returned if the vertex was deleted and waitForSync was false.

	HTTP	404	

is returned if the graph or the vertex was not found. The response body contains an error
document in this case.

	HTTP	412	

"If-Match" header or rev is given and the current vertex has a different version

Examples

unix>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/graph/graph/vertex/v1

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

{	

		"deleted"	:	true,	

		"error"	:	false,	

		"code"	:	202	

}

@CLEARPAGE @anchor A_JSF_POST_graph_vertex @copydetails
JSF_post_graph_vertex @CLEARPAGE @anchor A_JSF_GET_graph_vertex
@copydetails JSF_get_graph_vertex @CLEARPAGE @anchor
A_JSF_PUT_graph_vertex @copydetails JSF_put_graph_vertex @CLEARPAGE
@anchor A_JSF_PATCH_graph_vertex @copydetails JSF_patch_graph_vertex
@CLEARPAGE @anchor A_JSF_DELETE_graph_vertex @copydetails
JSF_delete_graph_vertex -->

	POST	/_api/graph/graph-name/edge-name	(create edge)

URL parameters

	graph-name	(string,required)	

The name of the graph

	edge-name	(string,required)	

The name of the edge

Query parameters

	waitForSync	(boolean,optional)	

Wait until edge has been sync to disk.

Body parameters

	edge	(json,required)	

The call expects a JSON hash array as body with the edge properties: Description

Creates an edge in a graph. The call expects a JSON hash array as body with the edge
properties:

_key: The name of the edge (optional, if edge collection allows user defined keys).
_from: The name of the from vertex.
_to: The name of the to vertex.
$label: A label for the edge (optional).

Returns an object with an attribute edge containing the list of all edge properties.

Return codes

	HTTP	201	

is returned if the edge was created successfully and waitForSync was true.

	HTTP	202	

Edge

is returned if the edge was created successfully and waitForSync was false.

Examples

unix>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/graph/graph/edge

{"_key":"edge1","_from":"vert2","_to":"vert1","optional1":"val1"}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	144630753

{	

		"edge"	:	{	

				"_id"	:	"edges/edge1",	

				"_rev"	:	"144630753",	

				"_key"	:	"edge1",	

				"_from"	:	"vertices/vert2",	

				"_to"	:	"vertices/vert1",	

				"$label"	:	null,	

				"optional1"	:	"val1"	

		},	

		"error"	:	false,	

		"code"	:	202	

}

	GET	/_api/graph/graph-name/edge	(get edge)

URL parameters

	graph-name	(string,required)	

The name of the graph

	edge-name	(string,required)	

The name of the edge

Query parameters

	rev	(string,optional)	

Revision of an edge

HTTP header parameters

	if-none-match	(string,optional)	

If the "If-None-Match" header is given, then it must contain exactly one etag. The
document is returned, if it has a different revision than the given etag. Otherwise a HTTP
304 is returned. if-match (string,optional) If the "If-Match" header is given, then it must
contain exactly one etag. The document is returned, if it has the same revision ad the
given etag. Otherwise a HTTP 412 is returned. As an alternative you can supply the etag
in an attribute rev in the URL. Description

Returns an object with an attribute edge containing a list of all edge properties.

Return codes

	HTTP	200	

is returned if the edge was found

	HTTP	304	

"If-Match" header is given and the current edge has not a different version

	HTTP	404	

is returned if the graph or edge was not found. The response body contains an error
document in this case.

	HTTP	412	

"If-None-Match" header or rev is given and the current edge has a different version

Examples

unix>	curl	--dump	-	http://localhost:8529/_api/graph/graph/edge/edge1

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

etag:	147579873

{	

		"edge"	:	{	

				"_id"	:	"edges/edge1",	

				"_rev"	:	"147579873",	

				"_key"	:	"edge1",	

				"_from"	:	"vertices/vert1",	

				"_to"	:	"vertices/vert2",	

				"$label"	:	null,	

				"optional1"	:	"val1"	

		},	

		"error"	:	false,	

		"code"	:	200	

}

	PUT	/_api/graph/graph-name/edge-name	(update edge)

URL parameters

	graph-name	(string,required)	

The name of the graph

	edge-name	(string,required)	

The name of the edge

Query parameters

	waitForSync	(boolean,optional)	

Wait until edge has been sync to disk.

	rev	(string,optional)	

Revision of an edge

Body parameters

	edge	(json,required)	

The call expects a JSON hash array as body with the new edge properties.

HTTP header parameters

	if-match	(string,optional)	

If the "If-Match" header is given, then it must contain exactly one etag. The document is
returned, if it has the same revision ad the given etag. Otherwise a HTTP 412 is returned.
As an alternative you can supply the etag in an attribute rev in the URL. Description

Replaces the optional edge properties. The call expects a JSON hash array as body with
the new edge properties.

Returns an object with an attribute edge containing a list of all edge properties.

Return codes

	HTTP	201	

is returned if the edge was updated successfully and waitForSync was true.

	HTTP	202	

is returned if the edge was updated successfully and waitForSync was false.

	HTTP	404	

is returned if the graph or the edge was not found. The response body contains an error
document in this case.

	HTTP	412	

"If-Match" header or rev is given and the current edge has a different version Examples

unix>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/graph/graph/edge/edge1

{"optional1":"val2"}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	154526689

{	

		"edge"	:	{	

				"_id"	:	"edges/edge1",	

				"_rev"	:	"154526689",	

				"_key"	:	"edge1",	

				"_from"	:	"vertices/vert1",	

				"_to"	:	"vertices/vert2",	

				"$label"	:	null,	

				"optional1"	:	"val2"	

		},	

		"error"	:	false,	

		"code"	:	202	

}

	PATCH	/_api/graph/graph-name/edge-name	(update edge)

URL parameters

	graph-name	(string,required)	

The name of the graph

	edge-name	(string,required)	

The name of the edge

Query parameters

	waitForSync	(boolean,optional)	

Wait until edge has been sync to disk.

	rev	(string,optional)	

Revision of an edge

	keepNull	(boolean,optional)	

Modify the behavior of the patch command to remove any attribute

Body parameters

	edge-properties	(json,required)	

The call expects a JSON hash array as body with the properties to patch.

HTTP header parameters

	if-match	(string,optional)	

If the "If-Match" header is given, then it must contain exactly one etag. The document is
returned, if it has the same revision ad the given etag. Otherwise a HTTP 412 is returned.
As an alternative you can supply the etag in an attribute rev in the URL.

Description

Partially updates the edge properties. Setting an attribute value to null in the patch
document will cause a value of null be saved for the attribute by default. If the intention is
to delete existing attributes with the patch command, the URL parameter keepNull can be
used with a value of false. This will modify the behavior of the patch command to remove
any attributes from the existing document that are contained in the patch document with
an attribute value of null.

Returns an object with an attribute edge containing a list of all edge properties.

Return codes

	HTTP	201	

is returned if the edge was updated successfully and waitForSync was true.

	HTTP	202	

is returned if the edge was updated successfully and waitForSync was false.

	HTTP	404	

is returned if the graph or the edge was not found. The response body contains an error
document in this case.

	HTTP	412	

"If-Match" header or rev is given and the current edge has a different version

Examples

unix>	curl	-X	PATCH	--data-binary	@-	--dump	-	http://localhost:8529/_api/graph/graph/edge/edge1

{"optional3":"val3"}

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	158065633

{	

		"edge"	:	{	

				"_id"	:	"edges/edge1",	

				"_rev"	:	"158065633",	

				"_key"	:	"edge1",	

				"_from"	:	"vertices/vert1",	

				"_to"	:	"vertices/vert2",	

				"$label"	:	null,	

				"optional1"	:	"val1",	

				"optional3"	:	"val3"	

		},	

		"error"	:	false,	

		"code"	:	202	

}

	DELETE	/_api/graph/graph-name/edge-name	(delete edge)

URL parameters

	graph-name	(string,required)	

The name of the graph

	edge-name	(string,required)	

The name of the edge

Query parameters

	waitForSync	(boolean,optional)	

Wait until edge has been sync to disk.

	rev	(string,optional)	

Revision of an edge

HTTP header parameters

	if-match	(string,optional)	

If the "If-Match" header is given, then it must contain exactly one etag. The document is
returned, if it has the same revision ad the given etag. Otherwise a HTTP 412 is returned.
As an alternative you can supply the etag in an attribute rev in the URL.

Description

Deletes an edge of the graph

Return codes

	HTTP	200	

is returned if the edge was deleted successfully and waitForSync was true.

	HTTP	202	

is returned if the edge was deleted successfully and waitForSync was false.

	HTTP	404	

is returned if the graph or the edge was not found. The response body contains an error
document in this case.

	HTTP	412	

"If-Match" header or rev is given and the current edge has a different version

Examples

unix>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/graph/graph/edge/edge1

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

{	

		"deleted"	:	true,	

		"error"	:	false,	

		"code"	:	202	

}

	POST	/_api/graph/graph-name/vertices/vertice-name	(get vertices)

URL parameters

	graph-name	(string,required)	

The name of the graph

Body parameters

	graph	(json,required)	

The call expects a JSON hash array as body to filter the result:

Description

Returns a cursor. The call expects a JSON hash array as body to filter the result:

batchSize: the batch size of the returned cursor
limit: limit the result size
count: return the total number of results (default "false")
filter: a optional filter

The attributes of filter

direction: Filter for inbound (value "in") or outbound (value "out") neighbors. Default
value is "any".
labels: filter by an array of edge labels (empty array means no restriction)
properties: filter neighbors by an array of edge properties

The attributes of a property filter

key: filter the result vertices by a key value pair
value: the value of the key

compare: a compare operator

Return codes

	HTTP	201	

is returned if the cursor was created

Examples

Select all vertices

unix>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/graph/graph/vertices/v2

{"batchSize"	:	100,	"filter"	:	{"direction"	:	"any",	"properties":[]	}}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

{	

		"result"	:	[

				{	

						"_id"	:	"vertices/v1",	

						"_rev"	:	"132637665",	

						"_key"	:	"v1",	

						"optional1"	:	"val1"	

				},	

				{	

						"_id"	:	"vertices/v4",	

						"_rev"	:	"133620705",	

						"_key"	:	"v4",	

						"optional1"	:	"val1"	

				}	

],	

		"hasMore"	:	false,	

		"error"	:	false,	

		"code"	:	201	

}

Select vertices by direction and property filter

unix>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/graph/graph/vertices/v2

{"batchSize"	:	100,	"filter"	:	{"direction"	:	"out",	"properties":[{	"key":	"optional1",	"value":	"val2",	"compare"	:	"=="	},]	}}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

{	

		"result"	:	[

				{	

						"_id"	:	"vertices/v4",	

						"_rev"	:	"139125729",	

						"_key"	:	"v4",	

						"optional1"	:	"val2"	

				},	

				{	

						"_id"	:	"vertices/v1",	

						"_rev"	:	"138142689",	

						"_key"	:	"v1",	

						"optional1"	:	"val1"	

				}	

],	

		"hasMore"	:	false,	

		"error"	:	false,	

		"code"	:	201	

}

	POST	/_api/graph/graph-name/edges/vertex-name	(get edges)

URL parameters

	graph-name	(string,required)	

The name of the graph

	vertex-name	(string,required)	

The name of the vertex

Body parameters

	edge-properties	(json,required)	

The call expects a JSON hash array as body to filter the result:

Description

Returns a cursor.

The call expects a JSON hash array as body to filter the result:

batchSize: the batch size of the returned cursor
limit: limit the result size
count: return the total number of results (default "false")
filter: a optional filter

The attributes of filter

direction: Filter for inbound (value "in") or outbound (value "out") neighbors. Default
value is "any".
labels: filter by an array of edge labels
properties: filter neighbors by an array of properties

The attributes of a property filter

key: filter the result vertices by a key value pair
value: the value of the key
compare: a compare operator

Return codes

	HTTP	201	

is returned if the cursor was created

Examples

Select all edges

unix>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/graph/graph/edges/v2

{"batchSize"	:	100,	"filter"	:	{	"direction"	:	"any"	}}

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

{	

		"result"	:	[

				{	

						"_id"	:	"edges/edge1",	

						"_rev"	:	"167568353",	

						"_key"	:	"edge1",	

						"_from"	:	"vertices/v1",	

						"_to"	:	"vertices/v2",	

						"$label"	:	null,	

						"optional1"	:	"val1"	

				},	

				{	

						"_id"	:	"edges/edge3",	

						"_rev"	:	"168485857",	

						"_key"	:	"edge3",	

						"_from"	:	"vertices/v2",	

						"_to"	:	"vertices/v4",	

						"$label"	:	null,	

						"optional1"	:	"val1"	

				}	

],	

		"hasMore"	:	false,	

		"error"	:	false,	

		"code"	:	201	

}

Traversals

ArangoDB's graph traversals are executed on the server. Traversals can be initiated by
clients by sending the traversal description for execution to the server.

Traversals in ArangoDB are used to walk over a graph stored in one edge collection. It
can easily be described which edges of the graph should be followed and which actions
should be performed on each visited vertex. Furthermore the ordering of visiting the
nodes can be specified, for instance depth-first or breadth-first search are offered.

executes a traversal 	POST	/_api/traversal	

body:

Starts a traversal starting from a given vertex and following. edges contained in a given
edgeCollection. The request must contain the following attributes.

startVertex: id of the startVertex, e.g. "users/foo".

edgeCollection: (optional) name of the collection that contains the edges.

graphName: (optional) name of the graph that contains the edges. Either
edgeCollection or graphName has to be given. In case both values are set the
graphName is prefered.

filter (optional, default is to include all nodes): body (JavaScript code) of custom filter
function function signature: (config, vertex, path) -> mixed can return four different
string values:

"exclude" -> this vertex will not be visited.
"prune" -> the edges of this vertex will not be followed.
"" or undefined -> visit the vertex and follow it's edges.
Array -> containing any combination of the above. If there is at least one
"exclude" or "prune" respectivly is contained, it's effect will occur.

minDepth (optional, ANDed with any existing filters): visits only nodes in at least the

HTTP Interface for Traversals

Executing Traversals via HTTP

given depth

maxDepth (optional, ANDed with any existing filters): visits only nodes in at most the
given depth

visitor (optional): body (JavaScript) code of custom visitor function function signature:
(config, result, vertex, path) -> void visitor function can do anything, but its return
value is ignored. To populate a result, use the result variable by reference

direction (optional): direction for traversal
if set, must be either "outbound", "inbound", or "any"
if not set, the expander attribute must be specified

init (optional): body (JavaScript) code of custom result initialisation function function
signature: (config, result) -> void initialise any values in result with what is required

expander (optional): body (JavaScript) code of custom expander function must be
set if direction attribute is not set function signature: (config, vertex, path) -> array
expander must return an array of the connections for vertex each connection is an
object with the attributes edge and vertex
sort (optional): body (JavaScript) code of a custom comparison function for the
edges. The signature of this function is (l, r) -> integer (where l and r are edges) and
must return -1 if l is smaller than, +1 if l is greater than, and 0 if l and r are equal. The
reason for this is the following: The order of edges returned for a certain vertex is
undefined. This is because there is no natural order of edges for a vertex with
multiple connected edges. To explicitly define the order in which edges on the vertex
are followed, you can specify an edge comparator function with this attribute. Note
that the value here has to be a string to conform to the JSON standard, which in turn
is parsed as function body on the server side. Furthermore note that this attribute is
only used for the standard expanders. If you use your custom expander you have to
do the sorting yourself within the expander code.

strategy (optional): traversal strategy can be "depthfirst" or "breadthfirst"

order (optional): traversal order can be "preorder" or "postorder"

itemOrder (optional): item iteration order can be "forward" or "backward"

uniqueness (optional): specifies uniqueness for vertices and edges visited if set,
must be an object like this: "uniqueness": {"vertices": "none"|"global"|path", "edges":
"none"|"global"|"path"}

maxIterations (optional): Maximum number of iterations in each traversal. This
number can be set to prevent endless loops in traversal of cyclic graphs. When a
traversal performs as many iterations as the maxIterations value, the traversal will
abort with an error. If maxIterations is not set, a server-defined value may be used.

If the Traversal is successfully executed HTTP 200 will be returned. Additionally the
result object will be returned by the traversal.

For successful traversals, the returned JSON object has the following properties:

error: boolean flag to indicate if an error occurred (false in this case)

code: the HTTP status code

result: the return value of the traversal

If the traversal specification is either missing or malformed, the server will respond with
HTTP 400.

The body of the response will then contain a JSON object with additional error details.
The object has the following attributes:

error: boolean flag to indicate that an error occurred (true in this case)

code: the HTTP status code

errorNum: the server error number

errorMessage: a descriptive error message

Return Codes

200: If the traversal is fully executed HTTP 200 will be returned.

400: If the traversal specification is either missing or malformed, the server will
respond with HTTP 400.

404: The server will responded with HTTP 404 if the specified edge collection does
not exist, or the specified start vertex cannot be found.

500: The server will responded with HTTP 500 when an error occurs inside the
traversal or if a traversal performs more than maxIterations iterations.

Examples

In the following examples the underlying graph will contain five persons Alice, Bob,
Charlie, Dave and Eve. We will have the following directed relations:

Alice knows Bob
Bob knows Charlie
Bob knows Dave
Eve knows Alice
Eve knows Bob

The starting vertex will always be Alice.

Follow only outbound edges:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{	"startVertex":	"persons/alice",	"graphName"	:	"knows_graph",	"direction"	:	"outbound"}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Follow only inbound edges:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{	"startVertex":	"persons/alice",	"graphName"	:	"knows_graph",	"direction"	:	"inbound"}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Follow any direction of edges:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{"startVertex":"persons/alice","graphName":"knows_graph","direction":"any","uniqueness":{"vertices":"none","edges":"global"}}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Excluding Charlie and Bob:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{	"startVertex":	"persons/alice",	"graphName"	:	"knows_graph",	"direction"	:	"outbound",	"filter"	:	"if	(vertex.name	===	\"Bob\"	||	vertex.name	===	\"Charlie\")	{return	\"exclude\";}return;"}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Do not follow edges from Bob:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{	"startVertex":	"persons/alice",	"graphName"	:	"knows_graph",	"direction"	:	"outbound",	"filter"	:	"if	(vertex.name	===	\"Bob\")	{return	\"prune\";}return;"}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Visit only nodes in a depth of at least 2:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{	"startVertex":	"persons/alice",	"graphName"	:	"knows_graph",	"direction"	:	"outbound",	"minDepth"	:	2}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Visit only nodes in a depth of at most 1:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{	"startVertex":	"persons/alice",	"graphName"	:	"knows_graph",	"direction"	:	"outbound",	"maxDepth"	:	1}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Count all visited nodes and return a list of nodes only:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{	"startVertex":	"persons/alice",	"graphName"	:	"knows_graph",	"direction"	:	"outbound",	"init"	:	"result.visited	=	0;	result.myVertices	=	[];",	"visitor"	:	"result.visited++;	result.myVertices.push(vertex);"}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Expand only inbound edges of Alice and outbound edges of Eve:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{"startVertex":"persons/alice","graphName":"knows_graph","expander":"var	connections	=	[];if	(vertex.name	===	\"Alice\")	{config.datasource.getInEdges(vertex).forEach(function	(e)	{connections.push({	vertex:	require(\"internal\").db._document(e._from),	edge:	e});});}if	(vertex.name	===	\"Eve\")	{config.datasource.getOutEdges(vertex).forEach(function	(e)	{connections.push({vertex:	require(\"internal\").db._document(e._to),	edge:	e});});}return	connections;"}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Follow the depthfirst strategy:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{"startVertex":"persons/alice","graphName":"knows_graph","direction":"any","strategy":"depthfirst"}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Using postorder ordering:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{"startVertex":"persons/alice","graphName":"knows_graph","direction":"any","order":"postorder"}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Using backward item-ordering:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{"startVertex":"persons/alice","graphName":"knows_graph","direction":"any","itemOrder":"backward"}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Edges should only be included once globally, but nodes are included every time they are
visited:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{"startVertex":"persons/alice","graphName":"knows_graph","direction":"any","uniqueness":{"vertices":"none","edges":"global"}}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
If the underlying graph is cyclic, maxIterations should be set:

The underlying graph has two vertices Alice and Bob. With the directed edges:

Alice knows Bob _ Bob knows Alice

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal

{"startVertex":"persons/alice","graphName":"knows_graph","direction":"any","uniqueness":{"vertices":"none","edges":"none"},"maxIterations":5}

HTTP/1.1	500	Internal	Error

content-type:	application/json;	charset=utf-8

show response body

Replication

This is an introduction to ArangoDB's HTTP replication interface. The replication
architecture and components are described in more details in Replication.

The HTTP replication interface serves four main purposes:

fetch initial data from a server (e.g. for a backup, or for the initial synchronization of
data before starting the continuous replication applier)
querying the state of a master
fetch continuous changes from a master (used for incremental synchronization of
changes)
administer the replication applier (starting, stopping, configuring, querying state) on a
slave

Please note that all replication operations work on a per-database level. If an ArangoDB
server contains more than one database, the replication system must be configured
individually per database, and replicating the data of multiple databases will require
multiple operations.

HTTP Interface for Replication

The inventory method can be used to query an ArangoDB database's current set of
collections plus their indexes. Clients can use this method to get an overview of which
collections are present in the database. They can use this information to either start a full
or a partial synchronization of data, e.g. to initiate a backup or the incremental data
synchronization.

Return inventory of collections and indexes 	GET	/_api/replication/inventory	

includeSystem: Include system collections in the result. The default value is false.

Returns the list of collections and indexes available on the server. This list can be used
by replication clients to initiate an initial sync with the server.

The response will contain a JSON hash array with the collection and state and tick
attributes.

collections is a list of collections with the following sub-attributes:

parameters: the collection properties

indexes: a list of the indexes of a the collection. Primary indexes and edges indexes
are not included in this list.

The state attribute contains the current state of the replication logger. It contains the
following sub-attributes:

running: whether or not the replication logger is currently active

lastLogTick: the value of the last tick the replication logger has written

time: the current time on the server

Replication clients should note the lastLogTick value returned. They can then fetch
collections' data using the dump method up to the value of lastLogTick, and query the
continuous replication log for log events after this tick value.

To create a full copy of the collections on the logger server, a replication client can
execute these steps:

Replication Dump Commands

call the /inventory API method. This returns the lastLogTick value and the list of
collections and indexes from the logger server.

for each collection returned by /inventory, create the collection locally and call /dump
to stream the collection data to the client, up to the value of lastLogTick. After that,
the client can create the indexes on the collections as they were reported by
/inventory.

If the clients wants to continuously stream replication log events from the logger server,
the following additional steps need to be carried out:

the client should call /logger-follow initially to fetch the first batch of replication events
that were logged after the client's call to /inventory.

The call to /logger-follow should use a from parameter with the value of the lastLogTick
as reported by /inventory. The call to /logger-follow will return the x-arango-replication-
lastincluded which will contain the last tick value included in the response.

the client can then continuously call /logger-follow to incrementally fetch new
replication events that occurred after the last transfer.

Calls should use a from parameter with the value of the x-arango-replication-lastincluded
header of the previous response. If there are no more replication events, the response
will be empty and clients can go to sleep for a while and try again later.

Note: on a coordinator, this request must have the URL parameter DBserver which must
be an ID of a DBserver. The very same request is forwarded synchronously to that
DBserver. It is an error if this attribute is not bound in the coordinator case.

Return Codes

200: is returned if the request was executed successfully.

405: is returned when an invalid HTTP method is used.

500: is returned if an error occurred while assembling the response.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/replication/inventory

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
With some additional indexes:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/replication/inventory

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
The dump method can be used to fetch data from a specific collection. As the results of
the dump command can be huge, dump may not return all data from a collection at once.
Instead, the dump command may be called repeatedly by replication clients until there is
no more data to fetch. The dump command will not only return the current documents in
the collection, but also document updates and deletions.

Please note that the dump method will only return documents, updates and deletions
from a collection's journals and datafiles. Operations that are stored in the write-ahead
log only will not be returned. In order to ensure that these operations are included in a
dump, the write-ahead log must be flushed first.

To get to an identical state of data, replication clients should apply the individual parts of
the dump results in the same order as they are provided.

Return data of a collection 	GET	/_api/replication/dump	

collection: The name or id of the collection to dump.

from: Lower bound tick value for results.

to: Upper bound tick value for results.

chunkSize: Approximate maximum size of the returned result.

ticks: Whether or not to include tick values in the dump. Default value is true.

Returns the data from the collection for the requested range.

When the from URL parameter is not used, collection events are returned from the

beginning. When the from parameter is used, the result will only contain collection entries
which have higher tick values than the specified from value (note: the log entry with a tick
value equal to from will be excluded).

The to URL parameter can be used to optionally restrict the upper bound of the result to a
certain tick value. If used, the result will only contain collection entries with tick values up
to (including) to.

The chunkSize URL parameter can be used to control the size of the result. It must be
specified in bytes. The chunkSize value will only be honored approximately. Otherwise a
too low chunkSize value could cause the server to not be able to put just one entry into
the result and return it. Therefore, the chunkSize value will only be consulted after an
entry has been written into the result. If the result size is then bigger than chunkSize, the
server will respond with as many entries as there are in the response already. If the result
size is still smaller than chunkSize, the server will try to return more data if there's more
data left to return.

If chunkSize is not specified, some server-side default value will be used.

The Content-Type of the result is application/x-arango-dump. This is an easy-to-process
format, with all entries going onto separate lines in the response body.

Each line itself is a JSON hash, with at least the following attributes:

tick: the operation's tick attribute

key: the key of the document/edge or the key used in the deletion operation

rev: the revision id of the document/edge or the deletion operation

data: the actual document/edge data for types 2300 and 2301. The full
document/edge data will be returned even for updates.

type: the type of entry. Possible values for type are:

2300: document insertion/update

2301: edge insertion/update

2302: document/edge deletion

Note: there will be no distinction between inserts and updates when calling this method.

Return Codes

200: is returned if the request was executed successfully.

400: is returned if either the from or to values are invalid.

404: is returned when the collection could not be found.

405: is returned when an invalid HTTP method is used.

500: is returned if an error occurred while assembling the response.

Examples

Empty collection:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/replication/dump?collection=testCollection

HTTP/1.1	204	No	Content

content-type:	application/x-arango-dump;	charset=utf-8

x-arango-replication-checkmore:	false

x-arango-replication-lastincluded:	0

Non-empty collection:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/replication/dump?collection=testCollection

HTTP/1.1	200	OK

content-type:	application/x-arango-dump;	charset=utf-8

x-arango-replication-checkmore:	false

x-arango-replication-lastincluded:	1420236890

"{\"tick\":\"1419581530\",\"type\":2300,\"key\":\"123456\",\"rev\":\"1419515994\",\"data\":{\"_key\":\"123456\",\"_rev\":\"1419515994\",\"c\":false,\"b\":1,\"d\":\"additional	value\"}}

{\"tick\":\"1420040282\",\"type\":2302,\"key\":\"foobar\",\"rev\":\"1419974746\"}

{\"tick\":\"1420236890\",\"type\":2302,\"key\":\"abcdef\",\"rev\":\"1420171354\"}

"

Synchronize data from a remote endpoint 	PUT	/_api/replication/sync	

configuration: A JSON representation of the configuration.

Starts a full data synchronization from a remote endpoint into the local ArangoDB
database.

The sync method can be used by replication clients to connect an ArangoDB database to
a remote endpoint, fetch the remote list of collections and indexes, and collection data. It
will thus create a local backup of the state of data at the remote ArangoDB database.
sync works on a per-database level.

sync will first fetch the list of collections and indexes from the remote endpoint. It does so
by calling the inventory API of the remote database. It will then purge data in the local
ArangoDB database, and after start will transfer collection data from the remote database
to the local ArangoDB database. It will extract data from the remote database by calling
the remote database's dump API until all data are fetched.

The body of the request must be JSON hash with the configuration. The following
attributes are allowed for the configuration:

endpoint: the endpoint to connect to (e.g. "tcp://192.168.173.13:8529").

database: the database name on the master (if not specified, defaults to the name of
the local current database).

username: an optional ArangoDB username to use when connecting to the endpoint.

password: the password to use when connecting to the endpoint.

restrictType: an optional string value for collection filtering. When specified, the
allowed values are include or exclude.

restrictCollections: an optional list of collections for use with restrictType. If
restrictType is include, only the specified collections will be sychronised. If
restrictType is exclude, all but the specified collections will be synchronized.

In case of success, the body of the response is a JSON hash with the following attributes:

collections: a list of collections that were transferred from the endpoint

lastLogTick: the last log tick on the endpoint at the time the transfer was started. Use
this value as the from value when starting the continuous synchronization later.

WARNING: calling this method will sychronise data from the collections found on the
remote endpoint to the local ArangoDB database. All data in the local collections will be
purged and replaced with data from the endpoint.

Use with caution!

Note: this method is not supported on a coordinator in a cluster.

Return Codes

200: is returned if the request was executed successfully.

400: is returned if the configuration is incomplete or malformed.

405: is returned when an invalid HTTP method is used.

500: is returned if an error occurred during sychronisation.

501: is returned when this operation is called on a coordinator in a cluster.

Return cluster inventory of collections and indexes 	GET
/_api/replication/clusterInventory	

includeSystem: Include system collections in the result. The default value is false.

Returns the list of collections and indexes available on the cluster.

The response will be a list of JSON hash array, one for each collection, which contains
exactly two keys "parameters" and "indexes". This information comes from
Plan/Collections// in the agency, just that the indexes* attribute there is relocated to
adjust it to the data format of arangodump.

Return Codes

200: is returned if the request was executed successfully.

405: is returned when an invalid HTTP method is used.

500: is returned if an error occurred while assembling the response.

Previous versions of ArangoDB allowed starting, stopping and configuring the replication
logger. These commands are superfluous in ArangoDB 2.2 as all data-modification
operations are written to the server's write-ahead log and are not handled by a separate
logger.

The only useful operations remaining in ArangoDB 2.2 are to query the current state of
the logger and to fetch the latest changes written by the logger. The operations will return
the state and data from the write-ahead log.

returns the state of the replication logger

Return replication logger state 	GET	/_api/replication/logger-state	

Returns the current state of the server's replication logger. The state will include
information about whether the logger is running and about the last logged tick value. This
tick value is important for incremental fetching of data.

The state API can be called regardless of whether the logger is currently running or not.

The body of the response contains a JSON object with the following attributes:

state: the current logger state as a JSON hash array with the following sub-
attributes:

running: whether or not the logger is running

lastLogTick: the tick value of the latest tick the logger has logged. This value can be
used for incremental fetching of log data.

totalEvents: total number of events logged since the server was started. The value is
not reset between multiple stops and re-starts of the logger.

time: the current date and time on the logger server

server: a JSON hash with the following sub-attributes:

version: the logger server's version

Replication Logger Commands

serverId: the logger server's id

Return Codes

200: is returned if the logger state could be determined successfully.

405: is returned when an invalid HTTP method is used.

500: is returned if the logger state could not be determined.

Examples

Returns the state of the replication logger.

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/replication/logger-state

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
To query the latest changes logged by the replication logger, the HTTP interface also
provides the 	logger-follow	.

This method should be used by replication clients to incrementally fetch updates from an
ArangoDB database.

Returns log entries 	GET	/_api/replication/logger-follow	

from: Lower bound tick value for results.

to: Upper bound tick value for results.

chunkSize: Approximate maximum size of the returned result.

Returns data from the server's replication log. This method can be called by replication
clients after an initial synchronization of data. The method will return all "recent" log
entries from the logger server, and the clients can replay and apply these entries locally
so they get to the same data state as the logger server.

Clients can call this method repeatedly to incrementally fetch all changes from the logger
server. In this case, they should provide the from value so they will only get returned the

log events since their last fetch.

When the from URL parameter is not used, the logger server will return log entries
starting at the beginning of its replication log. When the from parameter is used, the
logger server will only return log entries which have higher tick values than the specified
from value (note: the log entry with a tick value equal to from will be excluded). Use the
from value when incrementally fetching log data.

The to URL parameter can be used to optionally restrict the upper bound of the result to a
certain tick value. If used, the result will contain only log events with tick values up to
(including) to. In incremental fetching, there is no need to use the to parameter. It only
makes sense in special situations, when only parts of the change log are required.

The chunkSize URL parameter can be used to control the size of the result. It must be
specified in bytes. The chunkSize value will only be honored approximately. Otherwise a
too low chunkSize value could cause the server to not be able to put just one log entry
into the result and return it. Therefore, the chunkSize value will only be consulted after a
log entry has been written into the result. If the result size is then bigger than chunkSize,
the server will respond with as many log entries as there are in the response already. If
the result size is still smaller than chunkSize, the server will try to return more data if
there's more data left to return.

If chunkSize is not specified, some server-side default value will be used.

The Content-Type of the result is application/x-arango-dump. This is an easy-to-process
format, with all log events going onto separate lines in the response body. Each log event
itself is a JSON hash, with at least the following attributes:

tick: the log event tick value

type: the log event type

Individual log events will also have additional attributes, depending on the event type. A
few common attributes which are used for multiple events types are:

cid: id of the collection the event was for

tid: id of the transaction the event was contained in

key: document key

rev: document revision id

data: the original document data

A more detailed description of the individual replication event types and their data
structures can be found in @ref RefManualReplicationEventTypes.

The response will also contain the following HTTP headers:

x-arango-replication-active: whether or not the logger is active. Clients can use this
flag as an indication for their polling frequency. If the logger is not active and there
are no more replication events available, it might be sensible for a client to abort, or
to go to sleep for a long time and try again later to check whether the logger has
been activated.

x-arango-replication-lastincluded: the tick value of the last included value in the
result. In incremental log fetching, this value can be used as the from value for the
following request. Note that if the result is empty, the value will be 0. This value
should not be used as from value by clients in the next request (otherwise the server
would return the log events from the start of the log again).

x-arango-replication-lasttick: the last tick value the logger server has logged (not
necessarily included in the result). By comparing the the last tick and last included
tick values, clients have an approximate indication of how many events there are still
left to fetch.

x-arango-replication-checkmore: whether or not there already exists more log data
which the client could fetch immediately. If there is more log data available, the client
could call logger-follow again with an adjusted from value to fetch remaining log
entries until there are no more.

If there isn't any more log data to fetch, the client might decide to go to sleep for a while
before calling the logger again.

Note: this method is not supported on a coordinator in a cluster.

Return Codes

200: is returned if the request was executed successfully, and there are log events
available for the requested range. The response body will not be empty in this case.

204: is returned if the request was executed successfully, but there are no log events
available for the requested range. The response body will be empty in this case.

400: is returned if either the from or to values are invalid.

405: is returned when an invalid HTTP method is used.

500: is returned if an error occurred while assembling the response.

501: is returned when this operation is called on a coordinator in a cluster.

Examples

No log events available:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/replication/logger-follow?from=1412175962

HTTP/1.1	204	No	Content

content-type:	application/x-arango-dump;	charset=utf-8

x-arango-replication-active:	true

x-arango-replication-checkmore:	false

x-arango-replication-lastincluded:	0

x-arango-replication-lasttick:	1412175962

A few log events:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/replication/logger-follow?from=1412175962

HTTP/1.1	200	OK

content-type:	application/x-arango-dump;	charset=utf-8

x-arango-replication-active:	true

x-arango-replication-checkmore:	false

x-arango-replication-lastincluded:	1413617754

x-arango-replication-lasttick:	1413617754

"{\"tick\":\"1412307034\",\"type\":2000,\"database\":\"71770\",\"cid\":\"1412241498\",\"collection\":{\"version\":5,\"type\":2,\"cid\":\"1412241498\",\"deleted\":false,\"doCompact\":true,\"maximalSize\":1048576,\"name\":\"products\",\"isVolatile\":false,\"waitForSync\":false}}

{\"tick\":\"1412634714\",\"type\":2300,\"database\":\"71770\",\"cid\":\"1412241498\",\"tid\":\"0\",\"key\":\"p1\",\"rev\":\"1412569178\",\"data\":{\"_key\":\"p1\",\"_rev\":\"1412569178\",\"name\":\"flux	compensator\"}}

{\"tick\":\"1412962394\",\"type\":2300,\"database\":\"71770\",\"cid\":\"1412241498\",\"tid\":\"0\",\"key\":\"p2\",\"rev\":\"1412896858\",\"data\":{\"_key\":\"p2\",\"_rev\":\"1412896858\",\"hp\":5100,\"name\":\"hybrid	hovercraft\"}}

{\"tick\":\"1413159002\",\"type\":2302,\"database\":\"71770\",\"cid\":\"1412241498\",\"tid\":\"0\",\"key\":\"p1\",\"rev\":\"1413093466\"}

{\"tick\":\"1413355610\",\"type\":2300,\"database\":\"71770\",\"cid\":\"1412241498\",\"tid\":\"0\",\"key\":\"p2\",\"rev\":\"1413290074\",\"data\":{\"_key\":\"p2\",\"_rev\":\"1413290074\"}}

{\"tick\":\"1413421146\",\"type\":2001,\"database\":\"71770\",\"cid\":\"1412241498\"}

{\"tick\":\"1413552218\",\"type\":2200,\"database\":\"71770\",\"tid\":\"1413486682\"}

{\"tick\":\"1413617754\",\"type\":2201,\"database\":\"71770\",\"tid\":\"1413486682\"}

"

More events than would fit into the response:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/replication/logger-follow?from=1413617754&chunkSize=400

HTTP/1.1	200	OK

content-type:	application/x-arango-dump;	charset=utf-8

x-arango-replication-active:	true

x-arango-replication-checkmore:	true

x-arango-replication-lastincluded:	1414076506

x-arango-replication-lasttick:	1415059546

"{\"tick\":\"1413748826\",\"type\":2000,\"database\":\"71770\",\"cid\":\"1413683290\",\"collection\":{\"version\":5,\"type\":2,\"cid\":\"1413683290\",\"deleted\":false,\"doCompact\":true,\"maximalSize\":1048576,\"name\":\"products\",\"isVolatile\":false,\"waitForSync\":false}}

{\"tick\":\"1414076506\",\"type\":2300,\"database\":\"71770\",\"cid\":\"1413683290\",\"tid\":\"0\",\"key\":\"p1\",\"rev\":\"1414010970\",\"data\":{\"_key\":\"p1\",\"_rev\":\"1414010970\",\"name\":\"flux	compensator\"}}

"

The applier commands allow to remotely start, stop, and query the state and
configuration of an ArangoDB database's replication applier.

Return configuration of replication applier 	GET	/_api/replication/applier-config	

Returns the configuration of the replication applier.

The body of the response is a JSON hash with the configuration. The following attributes
may be present in the configuration:

endpoint: the logger server to connect to (e.g. "tcp://192.168.173.13:8529").

database: the name of the database to connect to (e.g. "_system").

username: an optional ArangoDB username to use when connecting to the endpoint.

password: the password to use when connecting to the endpoint.

maxConnectRetries: the maximum number of connection attempts the applier will
make in a row. If the applier cannot establish a connection to the endpoint in this
number of attempts, it will stop itself.

connectTimeout: the timeout (in seconds) when attempting to connect to the
endpoint. This value is used for each connection attempt.

requestTimeout: the timeout (in seconds) for individual requests to the endpoint.

chunkSize: the requested maximum size for log transfer packets that is used when
the endpoint is contacted.

autoStart: whether or not to auto-start the replication applier on (next and following)
server starts

adaptivePolling: whether or not the replication applier will use adaptive polling.

Return Codes

200: is returned if the request was executed successfully.

Replication Applier Commands

405: is returned when an invalid HTTP method is used.

500: is returned if an error occurred while assembling the response.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/replication/applier-config

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Adjust configuration of replication applier 	PUT	/_api/replication/applier-config	

configuration: A JSON representation of the configuration.

Sets the configuration of the replication applier. The configuration can only be changed
while the applier is not running. The updated configuration will be saved immediately but
only become active with the next start of the applier.

The body of the request must be JSON hash with the configuration. The following
attributes are allowed for the configuration:

endpoint: the logger server to connect to (e.g. "tcp://192.168.173.13:8529"). The
endpoint must be specified.

database: the name of the database on the endpoint. If not specified, defaults to the
current local database name.

username: an optional ArangoDB username to use when connecting to the endpoint.

password: the password to use when connecting to the endpoint.

maxConnectRetries: the maximum number of connection attempts the applier will
make in a row. If the applier cannot establish a connection to the endpoint in this
number of attempts, it will stop itself.

connectTimeout: the timeout (in seconds) when attempting to connect to the
endpoint. This value is used for each connection attempt.

requestTimeout: the timeout (in seconds) for individual requests to the endpoint.

chunkSize: the requested maximum size for log transfer packets that is used when
the endpoint is contacted.

autoStart: whether or not to auto-start the replication applier on (next and following)
server starts

adaptivePolling: if set to true, the replication applier will fall to sleep for an
increasingly long period in case the logger server at the endpoint does not have any
more replication events to apply. Using adaptive polling is thus useful to reduce the
amount of work for both the applier and the logger server for cases when there are
only infrequent changes. The downside is that when using adaptive polling, it might
take longer for the replication applier to detect that there are new replication events
on the logger server.

Setting adaptivePolling to false will make the replication applier contact the logger server
in a constant interval, regardless of whether the logger server provides updates
frequently or seldomly.

In case of success, the body of the response is a JSON hash with the updated
configuration.

Return Codes

200: is returned if the request was executed successfully.

400: is returned if the configuration is incomplete or malformed, or if the replication
applier is currently running.

405: is returned when an invalid HTTP method is used.

500: is returned if an error occurred while assembling the response.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/replication/applier-config

{"endpoint":"tcp://127.0.0.1:8529","username":"replicationApplier","password":"applier1234@foxx","chunkSize":4194304,"autoStart":false,"adaptivePolling":true}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body

Start replication applier 	PUT	/_api/replication/applier-start	

from: The remote lastLogTick value from which to start applying. If not specified, the
last saved tick from the previous applier run is used. If there is no previous applier
state saved, the applier will start at the beginning of the logger server's log.

Starts the replication applier. This will return immediately if the replication applier is
already running.

If the replication applier is not already running, the applier configuration will be checked,
and if it is complete, the applier will be started in a background thread. This means that
even if the applier will encounter any errors while running, they will not be reported in the
response to this method.

To detect replication applier errors after the applier was started, use the
/_api/replication/applier-state API instead.

Return Codes

200: is returned if the request was executed successfully.

400: is returned if the replication applier is not fully configured or the configuration is
invalid.

405: is returned when an invalid HTTP method is used.

500: is returned if an error occurred while assembling the response.

Examples

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/replication/applier-start

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Stop replication applier 	PUT	/_api/replication/applier-stop	

Stops the replication applier. This will return immediately if the replication applier is not
running.

Return Codes

200: is returned if the request was executed successfully.

405: is returned when an invalid HTTP method is used.

500: is returned if an error occurred while assembling the response.

Examples

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/replication/applier-stop

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
State of the replication applier 	GET	/_api/replication/applier-state	

Returns the state of the replication applier, regardless of whether the applier is currently
running or not.

The response is a JSON hash with the following attributes:

state: a JSON hash with the following sub-attributes:

running: whether or not the applier is active and running

lastAppliedContinuousTick: the last tick value from the continuous replication log the
applier has applied.

lastProcessedContinuousTick: the last tick value from the continuous replication log
the applier has processed.

Regularly,	the	last	applied	and	last	processed	tick	values	should	be

identical.	For	transactional	operations,	the	replication	applier	will	first

process	incoming	log	events	before	applying	them,	so	the	processed	tick

value	might	be	higher	than	the	applied	tick	value.	This	will	be	the	case

until	the	applier	encounters	the	*transaction	commit*	log	event	for	the

transaction.

lastAvailableContinuousTick: the last tick value the logger server can provide.

time: the time on the applier server.

totalRequests: the total number of requests the applier has made to the endpoint.

totalFailedConnects: the total number of failed connection attempts the applier has
made.

totalEvents: the total number of log events the applier has processed.

progress: a JSON hash with details about the replication applier progress. It contains
the following sub-attributes if there is progress to report:

message: a textual description of the progress

time: the date and time the progress was logged

failedConnects: the current number of failed connection attempts

lastError: a JSON hash with details about the last error that happened on the applier.
It contains the following sub-attributes if there was an error:

errorNum: a numerical error code

errorMessage: a textual error description

time: the date and time the error occurred

In	case	no	error	has	occurred,	*lastError*	will	be	empty.

server: a JSON hash with the following sub-attributes:

version: the applier server's version

serverId: the applier server's id

endpoint: the endpoint the applier is connected to (if applier is active) or will connect
to (if applier is currently inactive)

database: the name of the database the applier is connected to (if applier is active)
or will connect to (if applier is currently inactive)

Return Codes

200: is returned if the request was executed successfully.

405: is returned when an invalid HTTP method is used.

500: is returned if an error occurred while assembling the response.

Examples

Fetching the state of an inactive applier:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/replication/applier-state

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Fetching the state of an active applier:

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/replication/applier-state

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body

Return server id 	GET	/_api/replication/server-id	

Returns the servers id. The id is also returned by other replication API methods, and this
method is an easy means of determining a server's id.

The body of the response is a JSON hash with the attribute serverId. The server id is
returned as a string.

Return Codes

200: is returned if the request was executed successfully.

405: is returned when an invalid HTTP method is used.

500: is returned if an error occurred while assembling the response.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/replication/server-id

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

{	

		"serverId"	:	"79999564225579"	

}

Other Replication Commands

ArangoDB provides an HTTP interface to import multiple documents at once into a
collection. This is known as a bulk import.

The data uploaded must be provided in JSON format. There are two mechanisms to
import the data:

self-contained JSON documents: in this case, each document contains all attribute
names and values. Attribute names may be completely different among the
documents uploaded
attribute names plus document data: in this case, the first document must be a JSON
list containing the attribute names of the documents that follow. The following
documents must be lists containing only the document data. Data will be mapped to
the attribute names by attribute positions.

The endpoint address is /_api/import for both input mechanisms. Data must be sent to
this URL using an HTTP POST request. The data to import must be contained in the
body of the POST request.

The collection URL parameter must be used to specify the target collection for the import.
The optional URL parameter createCollection can be used to create a non-existing
collection during the import. If not used, importing data into a non-existing collection will
produce an error. Please note that the createCollection flag can only be used to create
document collections, not edge collections.

The waitForSync URL parameter can be set to true to make the import only return if all
documents have been synced to disk.

The complete URL parameter can be set to true to make the entire import fail if any of the
uploaded documents is invalid and cannot be imported. In this case, no documents will
be imported by the import run, even if a failure happens at the end of the import.

If complete has a value other than true, valid documents will be imported while invalid
documents will be rejected, meaning only some of the uploaded documents might have
been imported.

The details URL parameter can be set to true to make the import API return details about
documents that could not be imported. If details is true, then the result will also contain a

HTTP Interface for Bulk Imports

details attribute which is a list of detailed error messages. If the details is set to false or
omitted, no details will be returned.

This import method allows uploading self-contained JSON documents. The documents
must be uploaded in the body of the HTTP POST request. Each line of the body will be
interpreted as one stand-alone document. Empty lines in the body are allowed but will be
skipped. Using this format, the documents are imported line-wise.

Example input data: { "_key": "key1", ... } { "_key": "key2", ... } ...

To use this method, the type URL parameter should be set to documents.

It is also possible to upload self-contained JSON documents that are embedded into a
JSON list. Each element from the list will be treated as a document and be imported.

Example input data for this case:

[

		{	"_key":	"key1",	...	},

		{	"_key":	"key2",	...	},

		...

]

This format does not require each document to be on a separate line, and any
whitespace in the JSON data is allowed. It can be used to import a JSON-formatted
result list (e.g. from arangosh) back into ArangoDB. Using this format requires ArangoDB
to parse the complete list and keep it in memory for the duration of the import. This might
be more resource-intensive than the line-wise processing.

To use this method, the type URL parameter should be set to array.

Setting the type URL parameter to auto will make the server auto-detect whether the data
are line-wise JSON documents (type = documents) or a JSON list (type = array).

Examples

curl	--data-binary	@-	-X	POST	--dump	-	"http://localhost:8529/_api/import?type=documents&collection=test&createCollection=true"

{	"name"	:	"test",	"gender"	:	"male",	"age"	:	39	}

{	"type"	:	"bird",	"name"	:	"robin"	}

Importing Self-Contained JSON
Documents

HTTP/1.1	201	Created

server:	triagens	GmbH	High-Performance	HTTP	Server

connection:	Keep-Alive

content-type:	application/json;	charset=utf-8

{"error":false,"created":2,"empty":0,"errors":0}

The server will respond with an HTTP 201 if everything went well. The number of
documents imported will be returned in the created attribute of the response. If any
documents were skipped or incorrectly formatted, this will be returned in the errors
attribute. There will also be an attribute empty in the response, which will contain a value
of 0.

If the details parameter was set to true in the request, the response will also contain an
attribute details which is a list of details about errors that occurred on the server side
during the import. This list might be empty if no errors occurred.

When using this type of import, the attribute names of the documents to be imported are
specified separate from the actual document value data. The first line of the HTTP POST
request body must be a JSON list containing the attribute names for the documents that
follow. The following lines are interpreted as the document data. Each document must be
a JSON list of values. No attribute names are needed or allowed in this data section.

Examples

curl	--data-binary	@-	-X	POST	--dump	-	"http://localhost:8529/_api/import?collection=test&createCollection=true"

["firstName",	"lastName",	"age",	"gender"]

["Joe",	"Public",	42,	"male"]

["Jane",	"Doe",	31,	"female"]

HTTP/1.1	201	Created

server:	triagens	GmbH	High-Performance	HTTP	Server

connection:	Keep-Alive

content-type:	application/json;	charset=utf-8

{"error":false,"created":2,"empty":0,"errors":0}

The server will again respond with an HTTP 201 if everything went well. The number of
documents imported will be returned in the created attribute of the response. If any
documents were skipped or incorrectly formatted, this will be returned in the errors
attribute. The number of empty lines in the input file will be returned in the empty
attribute.

If the details parameter was set to true in the request, the response will also contain an
attribute details which is a list of details about errors that occurred on the server side
during the import. This list might be empty if no errors occurred.

Please note that when importing documents into an edge collection, it is mandatory that
all imported documents contain the _from and _to attributes, and that these contain
references to existing collections.

Please also note that it is not possible to create a new edge collection on the fly using the

Importing Headers and Values

Importing into Edge Collections

createCollection parameter.

Clients normally send individual operations to ArangoDB in individual HTTP requests.
This is straightforward and simple, but has the disadvantage that the network overhead
can be significant if many small requests are issued in a row.

To mitigate this problem, ArangoDB offers a batch request API that clients can use to
send multiple operations in one batch to ArangoDB. This method is especially useful
when the client has to send many HTTP requests with a small body/payload and the
individual request results do not depend on each other.

Clients can use ArangoDB's batch API by issuing a multipart HTTP POST request to the
URL /_api/batch handler. The handler will accept the request if the Content-Type is
multipart/form-data and a boundary string is specified. ArangoDB will then decompose
the batch request into its individual parts using this boundary. This also means that the
boundary string itself must not be contained in any of the parts. When ArangoDB has split
the multipart request into its individual parts, it will process all parts sequentially as if it
were a standalone request. When all parts are processed, ArangoDB will generate a
multipart HTTP response that contains one part for each part operation result. For
example, if you send a multipart request with 5 parts, ArangoDB will send back a
multipart response with 5 parts as well.

The server expects each part message to start with exactly the following "header":

Content-Type:	application/x-arango-batchpart

You can optionally specify a Content-Id "header" to uniquely identify each part message.
The server will return the Content-Id in its response if it is specified. Otherwise, the server
will not send a Content-Id "header" back. The server will not validate the uniqueness of
the Content-Id. After the mandatory Content-Type and the optional Content-Id header,
two Windows line breaks (i.e. \r\n\r\n) must follow. Any deviation of this structure might
lead to the part being rejected or incorrectly interpreted. The part request payload,
formatted as a regular HTTP request, must follow the two Windows line breaks literal
directly.

Note that the literal Content-Type: application/x-arango-batchpart technically is the
header of the MIME part, and the HTTP request (including its headers) is the body part of
the MIME part.

HTTP Interface for Batch Requests

An actual part request should start with the HTTP method, the called URL, and the HTTP
protocol version as usual, followed by arbitrary HTTP headers. Its body should follow
after the usual \r\n\r\n literal. Part requests are therefore regular HTTP requests, only
embedded inside a multipart message.

The following example will send a batch with 3 individual document creation operations.
The boundary used in this example is XXXsubpartXXX.

Examples

>	curl	-X	POST	--data-binary	@-	--header	"Content-Type:	multipart/form-data;	boundary=XXXsubpartXXX"

--XXXsubpartXXX

Content-Type:	application/x-arango-batchpart

Content-Id:	1

POST	/_api/document?collection=xyz&createCollection=true	HTTP/1.1

{"a":1,"b":2,"c":3}

--XXXsubpartXXX

Content-Type:	application/x-arango-batchpart

Content-Id:	2

POST	/_api/document?collection=xyz	HTTP/1.1

{"a":1,"b":2,"c":3,"d":4}

--XXXsubpartXXX

Content-Type:	application/x-arango-batchpart

Content-Id:	3

POST	/_api/document?collection=xyz	HTTP/1.1

{"a":1,"b":2,"c":3,"d":4,"e":5}

--XXXsubpartXXX--

The server will then respond with one multipart message, containing the overall status
and the individual results for the part operations. The overall status should be 200 except
there was an error while inspecting and processing the multipart message. The overall
status therefore does not indicate the success of each part operation, but only indicates
whether the multipart message could be handled successfully.

Each part operation will return its own status value. As the part operation results are
regular HTTP responses (just included in one multipart response), the part operation
status is returned as a HTTP status code. The status codes of the part operations are
exactly the same as if you called the individual operations standalone. Each part
operation might also return arbitrary HTTP headers and a body/payload:

Examples

HTTP/1.1	200	OK

connection:	Keep-Alive

content-type:	multipart/form-data;	boundary=XXXsubpartXXX

content-length:	1055

--XXXsubpartXXX

Content-Type:	application/x-arango-batchpart

Content-Id:	1

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	"9514299"

content-length:	53

{"error":false,"_id":"xyz/9514299","_key":"9514299","_rev":"9514299"}

--XXXsubpartXXX

Content-Type:	application/x-arango-batchpart

Content-Id:	2

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	"9579835"

content-length:	53

{"error":false,"_id":"xyz/9579835","_key":"9579835","_rev":"9579835"}

--XXXsubpartXXX

Content-Type:	application/x-arango-batchpart

Content-Id:	3

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	"9645371"

content-length:	53

{"error":false,"_id":"xyz/9645371","_key":"9645371","_rev":"9645371"}

--XXXsubpartXXX--

In the above example, the server returned an overall status code of 200, and each part
response contains its own status value (202 in the example):

When constructing the multipart HTTP response, the server will use the same boundary
that the client supplied. If any of the part responses has a status code of 400 or greater,
the server will also return an HTTP header x-arango-errors containing the overall number
of part requests that produced errors:

Examples

>	curl	-X	POST	--data-binary	@-	--header	"Content-Type:	multipart/form-data;	boundary=XXXsubpartXXX"

--XXXsubpartXXX

Content-Type:	application/x-arango-batchpart

POST	/_api/document?collection=nonexisting

{"a":1,"b":2,"c":3}

--XXXsubpartXXX

Content-Type:	application/x-arango-batchpart

POST	/_api/document?collection=xyz

{"a":1,"b":2,"c":3,"d":4}

--XXXsubpartXXX--

In this example, the overall response code is 200, but as some of the part request failed
(with status code 404), the x-arango-errors header of the overall response is 1:

Examples

HTTP/1.1	200	OK

x-arango-errors:	1

content-type:	multipart/form-data;	boundary=XXXsubpartXXX

content-length:	711

--XXXsubpartXXX

Content-Type:	application/x-arango-batchpart

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

content-length:	111

{"error":true,"code":404,"errorNum":1203,"errorMessage":"collection	\/_api\/collection\/nonexisting	not	found"

--XXXsubpartXXX

Content-Type:	application/x-arango-batchpart

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

etag:	"9841979"

content-length:	53

{"error":false,"_id":"xyz/9841979","_key":"9841979","_rev":"9841979"}

--XXXsubpartXXX--

Please note that the database used for all part operations of a batch request is
determined by scanning the original URL (the URL that contains /_api/batch). It is not
possible to override the database name in part operations of a batch. When doing so, any
other database name used in a batch part will be ignored.

This is an introduction to ArangoDB's Http interface for administration and monitoring of
the server.

returns the log files

Read global log from the server 	GET	/_admin/log	

upto: Returns all log entries up to log level upto. Note that upto must be:
fatal or 0
error or 1
warning or 2
info or 3
debug or 4 The default value is info.

level: Returns all log entries of log level level. Note that the URL parameters upto
and level are mutually exclusive.

start: Returns all log entries such that their log entry identifier (lid value) is greater or
equal to start.

size: Restricts the result to at most size log entries.

offset: Starts to return log entries skipping the first offset log entries. offset and size
can be used for pagination.

search: Only return the log entries containing the text specified in search.

sort: Sort the log entries either ascending (if sort is asc) or descending (if sort is
desc) according to their lid values. Note that the lid imposes a chronological order.
The default value is asc.

Returns fatal, error, warning or info log messages from the server's global log. The result
is a JSON object with the following attributes:

lid: a list of log entry identifiers. Each log message is uniquely identified by its
@LIT{lid} and the identifiers are in ascending order.

HTTP Interface for Administration and
Monitoring

level: a list of the log-levels for all log entries.

timestamp: a list of the timestamps as seconds since 1970-01-01 for all log entries.

text a list of the texts of all log entries

totalAmount: the total amount of log entries before pagination.

Return Codes

400: is returned if invalid values are specified for upto or level.

403: is returned if the log is requested for any database other than _system.

500: is returned if the server cannot generate the result due to an out-of-memory
error.

Reloads the routing information 	POST	/_admin/routing/reload	

Reloads the routing information from the collection routing.

Return Codes

200: Routing information was reloaded successfully.

Read the statistics 	GET	/_admin/statistics	

Returns the statistics information. The returned object contains the statistics figures
grouped together according to the description returned by _admin/statistics-description.
For instance, to access a figure userTime from the group system, you first select the sub-
object describing the group stored in system and in that sub-object the value for
userTime is stored in the attribute of the same name.

In case of a distribution, the returned object contains the total count in count and the
distribution list in counts. The sum (or total) of the individual values is returned in sum.

Return Codes

200: Statistics were returned successfully.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_admin/statistics

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Statistics description 	GET	/_admin/statistics-description	

Returns a description of the statistics returned by /_admin/statistics. The returned objects
contains a list of statistics groups in the attribute groups and a list of statistics figures in
the attribute figures.

A statistics group is described by

group: The identifier of the group.
name: The name of the group.
description: A description of the group.

A statistics figure is described by

group: The identifier of the group to which this figure belongs.
identifier: The identifier of the figure. It is unique within the group.
name: The name of the figure.
description: A description of the figure.
type: Either current, accumulated, or distribution.
cuts: The distribution vector.
units: Units in which the figure is measured.

Return Codes

200: Description was returned successfully.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_admin/statistics-description

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body

Return role of a server in a cluster 	GET	/_admin/server/role	

Returns the role of a server in a cluster. The role is returned in the role attribute of the
result. Possible return values for role are:

COORDINATOR: the server is a coordinator in a cluster
PRIMARY: the server is a primary database server in a cluster
SECONDARY: the server is a secondary database server in a cluster
UNDEFINED: in a cluster, UNDEFINED is returned if the server role cannot be
determined. On a single server, UNDEFINED is the only possible return value.

Return Codes

200: Is returned in all cases.

This is an introduction to ArangoDB's Http interface for managing users.

The interface provides a simple means to add, update, and remove users. All users
managed through this interface will be stored in the system collection _users.

This specialized interface intentionally does not provide all functionality that is available in
the regular document REST API.

Operations on users may become more restricted than regular document operations, and
extra privileges and security security checks may be introduced in the future for this
interface.

Please note that user operations are not included in ArangoDB's replication.

Create User 	POST	/_api/user	

The following data need to be passed in a JSON representation in the body of the POST
request:

user: The name of the user as a string. This is mandatory
passwd: The user password as a string. If no password is specified, the empty string
will be used
active: An optional flag that specifies whether the user is active. If not specified, this
will default to true
extra: An optional JSON object with arbitrary extra data about the user
changePassword: An optional flag that specifies whethers the user must change the
password or not. If not specified, this will default to false

If set to true, the only operations allowed are PUT /_api/user or PATCH /_api/user. All
other operations will result in a HTTP 403. If the user can be added by the server, the
server will respond with HTTP 201. In case of success, the returned JSON object has the
following properties:

error: Boolean flag to indicate that an error occurred (false in this case)
code: The HTTP status code

If the JSON representation is malformed or mandatory data is missing from the request,
the server will respond with HTTP 400.

HTTP Interface for User Management

The body of the response will contain a JSON object with additional error details. The
object has the following attributes:

error: Boolean flag to indicate that an error occurred (true in this case)
code: The HTTP status code
errorNum: The server error number
errorMessage: A descriptive error message

Return Codes

201: Returned if the user can be added by the server

400: If the JSON representation is malformed or mandatory data is missing from the
request.

Replace User 	PUT	/_api/user/{user}	

user: The name of the user

Replaces the data of an existing user. The name of an existing user must be specified in
user.

The following data can to be passed in a JSON representation in the body of the POST
request:

passwd: The user password as a string. Specifying a password is mandatory, but the
empty string is allowed for passwords
active: An optional flag that specifies whether the user is active. If not specified, this
will default to true
extra: An optional JSON object with arbitrary extra data about the user
changePassword: An optional flag that specifies whether the user must change the
password or not. If not specified, this will default to false

If the user can be replaced by the server, the server will respond with HTTP 200.

In case of success, the returned JSON object has the following properties:

error: Boolean flag to indicate that an error occurred (false in this case)
code: The HTTP status code

If the JSON representation is malformed or mandatory data is missing from the request,
the server will respond with HTTP 400. If the specified user does not exist, the server will

respond with HTTP 404.

The body of the response will contain a JSON object with additional error details. The
object has the following attributes:

error: Boolean flag to indicate that an error occurred (true in this case)
code: The HTTP status code
errorNum: The server error number
errorMessage: A descriptive error message

Return Codes

200: Is returned if the user data can be replaced by the server

400: The JSON representation is malformed or mandatory data is missing from the
request

404: The specified user does not exist

Update User 	PATCH	/_api/user/{user}	

user: The name of the user

Partially updates the data of an existing user. The name of an existing user must be
specified in user.

The following data can be passed in a JSON representation in the body of the POST
request:

passwd: The user password as a string. Specifying a password is optional. If not
specified, the previously existing value will not be modified.
active: An optional flag that specifies whether the user is active. If not specified, the
previously existing value will not be modified.
extra: An optional JSON object with arbitrary extra data about the user. If not
specified, the previously existing value will not be modified.
changePassword: An optional flag that specifies whether the user must change the
password or not. If not specified, the previously existing value will not be modified.

If the user can be updated by the server, the server will respond with HTTP 200.

In case of success, the returned JSON object has the following properties:

error: Boolean flag to indicate that an error occurred (false in this case)
code: The HTTP status code

If the JSON representation is malformed or mandatory data is missing from the request,
the server will respond with HTTP 400. If the specified user does not exist, the server will
respond with HTTP 404.

The body of the response will contain a JSON object with additional error details. The
object has the following attributes:

error: Boolean flag to indicate that an error occurred (true in this case)
code: The HTTP status code
errorNum: The server error number
errorMessage: A descriptive error message

Return Codes

200: Is returned if the user data can be replaced by the server

400: The JSON representation is malformed or mandatory data is missing from the
request

404: The specified user does not exist

Remove User 	DELETE	/_api/user/{user}	

user: The name of the user

Removes an existing user, identified by user.

If the user can be removed, the server will respond with HTTP 202. In case of success,
the returned JSON object has the following properties:

error: Boolean flag to indicate that an error occurred (false in this case)
code: The HTTP status code

If the specified user does not exist, the server will respond with HTTP 404.

The body of the response will contain a JSON object with additional error details. The
object has the following attributes:

error: Boolean flag to indicate that an error occurred (true in this case)
code: The HTTP status code

errorNum: The server error number
errorMessage: A descriptive error message

Return Codes

202: Is returned if the user was removed by the server

404: The specified user does not exist

Fetch User 	GET	/_api/user/{user}	

user: The name of the user

Fetches data about the specified user.

The call will return a JSON document with at least the following attributes on success:

user: The name of the user as a string.
active: An optional flag that specifies whether the user is active.
extra: An optional JSON object with arbitrary extra data about the user.
changePassword: An optional flag that specifies whether the user must change the
password or not.

Return Codes

200: The user was found

404: The user with the specified name does not exist

Request Execution

ArangoDB provides various methods of executing client requests. Clients can choose the
appropriate method on a per-request level based on their throughput, control flow, and
durability requirements.

Blocking execution

ArangoDB is a multi-threaded server, allowing the processing of multiple client requests
at the same time. Communication handling and the actual work can be performed by
multiple worker threads in parallel.

Though multiple clients can connect and send their requests in parallel to ArangoDB,
clients may need to wait for their requests to be processed.

By default, the server will fully process an incoming request and then return the result to
the client. The client must wait for the server's response before it can send additional
requests over the connection. For clients that are single-threaded or not event-driven,
waiting for the full server response may be non-optimal.

Furthermore, please note that even if the client closes the HTTP connection, the request
running on the server will still continue until it is complete and only then notice that the
client no longer listens. Thus closing the connection does not help to abort a long running
query! See below under Async Execution and later Result Retrieval and
HttpJobPutCancel for details.

Fire and Forget

To mitigate client blocking issues, ArangoDB since version 1.4. offers a generic
mechanism for non-blocking requests: if clients add the HTTP header x-arango-async:
true to their requests, ArangoDB will put the request into an in-memory task queue and
return an HTTP 202 (accepted) response to the client instantly. The server will execute
the tasks from the queue asynchronously, decoupling the client requests and the actual
work.

This allows for much higher throughput than if clients would wait for the server's

HTTP Interface for Async Results
Management

response. The downside is that the response that is sent to the client is always the same
(a generic HTTP 202) and clients cannot make a decision based on the actual operation's
result. In fact, the operation might have not even been executed at the time the generic
response has reached the client. Clients can thus not rely on their requests having been
processed successfully.

The asynchronous task queue on the server is not persisted, meaning not-yet processed
tasks from the queue might be lost in case of a crash.

Clients should thus not send the extra header when they have strict durability
requirements or if they rely on result of the sent operation for further actions.

The maximum number of queued tasks is determined by the startup option -
scheduler.maximal-queue-size. If more than this number of tasks are already queued, the
server will reject the request with an HTTP 500 error.

Finally, please note that it is not possible to cancel such a non-blocking request after the
fact. If you need to cancel requests, use Async Execution and later Result Retrieval and
HttpJobPutCancel below.

Async Execution and later Result Retrieval

By adding the HTTP header x-arango-async: store to a request, clients can instruct the
ArangoDB server to execute the operation asynchronously as above "above", but also
store the operation result in memory for a later retrieval. The server will return a job id in
the HTTP response header x-arango-async-id. The client can use this id in conjunction
with the HTTP API at /_api/job, which is described in detail in this manual.

Clients can ask the ArangoDB server via the async jobs API which results are ready for
retrieval, and which are not. Clients can also use the async jobs API to retrieve the
original results of an already executed async job by passing it the originally returned job
id. The server will then return the job result as if the job was executed normally.
Furthermore, clients can cancel running async jobs by their job id, see HttpJobPutCancel.

ArangoDB will keep all results of jobs initiated with the x-arango-async: store header.
Results are removed from the server only if a client explicitly asks the server for a specific
result.

The async jobs API also provides methods for garbage collection that clients can use to
get rid of "old" not fetched results. Clients should call this method periodically because
ArangoDB does not artificially limit the number of not-yet-fetched results.

It is thus a client responsibility to store only as many results as needed and to fetch
available results as soon as possible, or at least to clean up not fetched results from time
to time.

The job queue and the results are kept in memory only on the server, so they might be
lost in case of a crash.

Canceling asynchronous jobs

As mentioned above it is possible to cancel an asynchronously running job using its job
ID. This is done with a PUT request as described in HttpJobPutCancel.

However, a few words of explanation about what happens behind the scenes are in
order. Firstly, a running async query can internally be executed by C++ code or by
JavaScript code. For example CRUD operations are executed directly in C++, whereas
AQL queries and transactions are executed by JavaScript code. The job cancellation only
works for JavaScript code, since the mechanism used is simply to trigger an uncatchable
exception in the JavaScript thread, which will be caught on the C++ level, which in turn
leads to the cancellation of the job. No result can be retrieved later, since all data about
the request is discarded.

If you cancel a job running on a coordinator of a cluster (Sharding), then only the code
running on the coordinator is stopped, there may remain tasks within the cluster which
have already been distributed to the DBservers and it is currently not possible to cancel
them as well.

Async Execution and Authentication

If a request requires authentication, the authentication procedure is run before queueing.
The request will only be queued if it valid credentials and the authentication succeeds. If
the request does not contain valid credentials, it will not be queued but rejected instantly
in the same way as a "regular", non-queued request.

Returns the result of an async job

Return result of an async job 	PUT	/_api/job/job-id	

job-id: The async job id.

Managing Async Results via HTTP

Returns the result of an async job identified by job-id. If the async job result is present on
the server, the result will be removed from the list of result. That means this method can
be called for each job-id once. The method will return the original job result's headers and
body, plus the additional HTTP header x-arango-async-job-id. If this header is present,
then the job was found and the response contains the original job's result. If the header is
not present, the job was not found and the response contains status information from the
job manager.

Return Codes

204: is returned if the job requested via job-id is still in the queue of pending (or not
yet finished) jobs. In this case, no x-arango-async-id HTTP header will be returned.

400: is returned if no job-id was specified in the request. In this case, no x-arango-
async-id HTTP header will be returned.

404: is returned if the job was not found or already deleted or fetched from the job
result list. In this case, no x-arango-async-id HTTP header will be returned.

Examples Not providing a job-id:

unix>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/job/

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

{"error":true,"errorMessage":"bad	parameter","code":400,"errorNum":400}

Providing a job-id for a non-existing job:

unix>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/job/foobar

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

{"error":true,"errorMessage":"not	found","code":404,"errorNum":404}

Fetching the result of an HTTP GET job:

unix>	curl	--header	'x-arango-async:	store'	--dump	-	http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

content-type:	text/plain;	charset=utf-8

x-arango-async-id:	265413601

unix>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/job/265413601

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-arango-async-id:	265413601

{"server":"arango","version":"2.1.0"}

Fetching the result of an HTTP POST job that failed:

unix>	curl	-X	POST	--header	'x-arango-async:	store'	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection

{"name":"	this	name	is	invalid	"}

HTTP/1.1	202	Accepted

content-type:	text/plain;	charset=utf-8

x-arango-async-id:	265479137

unix>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/job/265479137

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

x-arango-async-id:	265479137

{"error":true,"code":400,"errorNum":1208,"errorMessage":"cannot	create	collection:	illegal	name"

Cancels the result an async job

Cancel async job 	PUT	/_api/job/job-id/cancel	

job-id: The async job id.

Cancels the currently running job identified by job-id. Note that it still might take some
time to actually cancel the running async job.

Return Codes

200: cancel has been initiated.

400: is returned if no job-id was specified in the request. In this case, no x-arango-
async-id HTTP header will be returned.

404: is returned if the job was not found or already deleted or fetched from the job
result list. In this case, no x-arango-async-id HTTP header will be returned.

Examples

unix>	curl	-X	POST	--header	'x-arango-async:	store'	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor

{"query":	"FOR	i	IN	1..10	FOR	j	IN	1..10	LET	x	=	sleep(1.0)	FILTER	i	==	5	&&	j	==	5	RETURN	42"

HTTP/1.1	202	Accepted

content-type:	text/plain;	charset=utf-8

x-arango-async-id:	268952545

unix>	curl	--dump	-	http://localhost:8529/_api/job/pending

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

["268952545"]

unix>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/job/268952545/cancel

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

{"result":true}

unix>	curl	--dump	-	http://localhost:8529/_api/job/pending

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

["268952545"]

Deletes the result of an async job

Deletes async job 	DELETE	/_api/job/type	

type: The type of jobs to delete. type can be:
all: Deletes all jobs results. Currently executing or queued async jobs will not be
stopped by this call.
expired: Deletes expired results. To determine the expiration status of a result, pass
the stamp URL parameter. stamp needs to be a UNIX timestamp, and all async job
results created at a lower timestamp will be deleted.
an actual job-id: In this case, the call will remove the result of the specified async job.
If the job is currently executing or queued, it will not be aborted.

stamp:

A UNIX timestamp specifying the expiration threshold when type is expired.

Deletes either all job results, expired job results, or the result of a specific job. Clients can
use this method to perform an eventual garbage collection of job results.

Return Codes

200: is returned if the deletion operation was carried out successfully. This code will
also be returned if no results were deleted.

400: is returned if type is not specified or has an invalid value.

404: is returned if type is a job-id but no async job with the specified id was found.

Examples

Deleting all jobs:

unix>	curl	--header	'x-arango-async:	store'	--dump	-	http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

content-type:	text/plain;	charset=utf-8

x-arango-async-id:	270132193

unix>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/job/all

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

{	

		"result"	:	true	

}

Deleting expired jobs:

unix>	curl	--header	'x-arango-async:	store'	--dump	-	http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

content-type:	text/plain;	charset=utf-8

x-arango-async-id:	270197729

unix>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/job/expired?stamp=1401376184

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

{	

		"result"	:	true	

}

Deleting the result of a specific job:

unix>	curl	--header	'x-arango-async:	store'	--dump	-	http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

content-type:	text/plain;	charset=utf-8

x-arango-async-id:	270263265

unix>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/job/270263265

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

{	

		"result"	:	true	

}

Deleting the result of a non-existing job:

unix>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/job/foobar

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

{	

		"error"	:	true,	

		"errorMessage"	:	"not	found",	

		"code"	:	404,	

		"errorNum"	:	404	

}

Returns the status of an async job

Returns async job 	GET	/_api/job/job-id	

job-id: The async job id.

Returns the processing status of the specified job. The processing status can be
determined by peeking into the HTTP response code of the response.

Return Codes

200: is returned if the job requested via job-id has been executed successfully and
its result is ready to fetch.

204: is returned if the job requested via job-id is still in the queue of pending (or not
yet finished) jobs.

404: is returned if the job was not found or already deleted or fetched from the job
result list.

Examples

Querying the status of a done job:

unix>	curl	--header	'x-arango-async:	store'	--dump	-	http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

content-type:	text/plain;	charset=utf-8

x-arango-async-id:	270328801

unix>	curl	--dump	-	http://localhost:8529/_api/job/270328801

HTTP/1.1	200	OK

content-type:	text/plain;	charset=utf-8

Querying	the	status	of	a	pending	job:

unix>	curl	--header	'x-arango-async:	store'	--dump	-	http://localhost:8529/_admin/sleep?duration=3

HTTP/1.1	202	Accepted

content-type:	text/plain;	charset=utf-8

x-arango-async-id:	270394337

unix>	curl	--dump	-	http://localhost:8529/_api/job/270394337

HTTP/1.1	204	No	Content

content-type:	text/plain;	charset=utf-8

Returns the list of job result id with a specific status

Returns list of async job 	GET	/_api/job/type	

type: The type of jobs to return. The type can be either done or pending. Setting the
type to done will make the method return the ids of already completed async jobs for
which results can be fetched. Setting the type to pending will return the ids of not yet
finished async jobs.

count:

The maximum number of ids to return per call. If not specified, a server-defined maximum
value will be used.

Returns the list of ids of async jobs with a specific status (either done or pending). The
list can be used by the client to get an overview of the job system status and to retrieve
completed job results later.

Return Codes

200: is returned if the list can be compiled successfully. Note: the list might be
empty.

400: is returned if type is not specified or has an invalid value.

Examples

Fetching the list of done jobs:

unix>	curl	--header	'x-arango-async:	store'	--dump	-	http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

content-type:	text/plain;	charset=utf-8

x-arango-async-id:	270459873

unix>	curl	--dump	-	http://localhost:8529/_api/job/done

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

[

		"270459873"	

]

Fetching the list of pending jobs:

unix>	curl	--header	'x-arango-async:	store'	--dump	-	http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

content-type:	text/plain;	charset=utf-8

x-arango-async-id:	270525409

unix>	curl	--dump	-	http://localhost:8529/_api/job/pending

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

[]

The ArangoDB server can listen for incoming requests on multiple endpoints.

The endpoints are normally specified either in ArangoDB's configuration file or on the
command-line, using the "--server.endpoint" option. The default endpoint for ArangoDB is
tcp://127.0.0.1:8529 or tcp://localhost:8529.

The number of endpoints can also be changed at runtime using the API described below.
Each endpoint can optionally be restricted to a specific list of databases only, thus
allowing the usage of different port numbers for different databases.

This may be useful in multi-tenant setups. A multi-endpoint setup may also be useful to
turn on encrypted communication for just specific databases.

The HTTP interface provides operations to add new endpoints at runtime, and optionally
restrict them for use with specific databases. The interface also can be used to update
existing endpoints or remove them at runtime.

Please note that all endpoint management operations can only be accessed via the
default database (_system) and none of the other databases.

connects a new endpoint or reconfigures an existing endpoint

Add new endpoint or reconfigures an existing endpoint 	POST	/_api/endpoint	

description: A JSON object describing the endpoint.

The request body must be JSON hash with the following attributes:

endpoint: the endpoint specification, e.g. tcp://127.0.0.1:8530

databases: a list of database names the endpoint is responsible for.

If databases is an empty list, all databases present in the server will become accessible
via the endpoint, with the _system database being the default database.

HTTP Interface for Endpoints

Managing Endpoints via HTTP

If databases is non-empty, only the specified databases will become available via the
endpoint. The first database name in the databases list will also become the default
database for the endpoint. The default database will always be used if a request coming
in on the endpoint does not specify the database name explicitly.

Note: adding or reconfiguring endpoints is allowed in the system database only. Calling
this action in any other database will make the server return an error.

Adding SSL endpoints at runtime is only supported if the server was started with SSL
properly configured (e.g. --server.keyfile must have been set).

Return Codes

200: is returned when the endpoint was added or changed successfully.

400: is returned if the request is malformed or if the action is not carried out in the
system database.

405: The server will respond with HTTP 405 if an unsupported HTTP method is
used.

Examples Adding an endpoint tcp://127.0.0.1:8532 with two mapped databases (mydb1
and mydb2). mydb1 will become the default database for the endpoint.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/endpoint

{"endpoint":"tcp://127.0.0.1:8532","databases":["mydb1","mydb2"]}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Adding an endpoint tcp://127.0.0.1:8533 with no database names specified. This will
allow access to all databases on this endpoint. The _system database will become the
default database for requests that come in on this endpoint and do not specify the
database name explicitly.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/endpoint

{"endpoint":"tcp://127.0.0.1:8533","databases":[]}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Adding an endpoint tcp://127.0.0.1:8533 without any databases first, and then updating
the databases for the endpoint to testdb1, testdb2, and testdb3.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/endpoint

{"endpoint":"tcp://127.0.0.1:8533","databases":[]}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/endpoint

{"endpoint":"tcp://127.0.0.1:8533","databases":[],"database":["testdb1","testdb2","testdb3"]}

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
disconnects an existing endpoint

Delete and disconnects an existing endpoint 	DELETE	/_api/endpoint/{endpoint}	

endpoint: The endpoint to delete, e.g. tcp://127.0.0.1:8529.

This operation deletes an existing endpoint from the list of all endpoints, and makes the
server stop listening on the endpoint.

Note: deleting and disconnecting an endpoint is allowed in the system database only.
Calling this action in any other database will make the server return an error.

Futhermore, the last remaining endpoint cannot be deleted as this would make the server
kaputt.

Return Codes

200: is returned when the endpoint was deleted and disconnected successfully.

400: is returned if the request is malformed or if the action is not carried out in the
system database.

404: is returned if the endpoint is not found.

405: The server will respond with HTTP 405 if an unsupported HTTP method is
used.

Examples

Deleting an existing endpoint

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/endpoint/tcp%3A%2F%2F127.0.0.1%3A8532

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Deleting a non-existing endpoint

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	http://localhost:8529/_api/endpoint/tcp%3A%2F%2F127.0.0.1%3A8532

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

show response body
returns a list of all endpoints

Return list of all endpoints 	GET	/_api/endpoint	

Returns a list of all configured endpoints the server is listening on. For each endpoint, the
list of allowed databases is returned too if set.

The result is a JSON hash which has the endpoints as keys, and the list of mapped
database names as values for each endpoint.

If a list of mapped databases is empty, it means that all databases can be accessed via
the endpoint. If a list of mapped databases contains more than one database name, this
means that any of the databases might be accessed via the endpoint, and the first
database in the list will be treated as the default database for the endpoint. The default
database will be used when an incoming request does not specify a database name in
the request explicitly.

Note: retrieving the list of all endpoints is allowed in the system database only. Calling
this action in any other database will make the server return an error.

Return Codes

200: is returned when the list of endpoints can be determined successfully.

400: is returned if the action is not carried out in the system database.

405: The server will respond with HTTP 405 if an unsupported HTTP method is
used.

Examples

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/endpoint

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

[

		{	

				"endpoint"	:	"tcp://127.0.0.1:35133",	

				"databases"	:	[]	

		},	

		{	

				"endpoint"	:	"tcp://127.0.0.1:8532",	

				"databases"	:	[

						"mydb1",	

						"mydb2"	

]	

		}	

]

Sharding only should be used by developers!

executes a cluster roundtrip for sharding

Execute cluster roundtrip 	GET	/_admin/cluster-test	

Executes a cluster roundtrip from a coordinator to a DB server and back. This call only
works in a coordinator node in a cluster. One can and should append an arbitrary path to
the URL and the part after /_admin/cluster-test is used as the path of the HTTP request
which is sent from the coordinator to a DB node. Likewise, any form data appended to
the URL is forwarded in the request to the DB node. This handler takes care of all
request types (see below) and uses the same request type in its request to the DB node.

The following HTTP headers are interpreted in a special way:

X-Shard-ID: This specifies the ID of the shard to which the cluster request is sent
and thus tells the system to which DB server to send the cluster request. Note that
the mapping from the shard ID to the responsible server has to be defined in the
agency under Current/ShardLocation/. One has to give this header, otherwise the
system does not know where to send the request.
X-Client-Transaction-ID: the value of this header is taken as the client transaction ID
for the request
X-Timeout: specifies a timeout in seconds for the cluster operation. If the answer
does not arrive within the specified timeout, an corresponding error is returned and
any subsequent real answer is ignored. The default if not given is 24 hours.
X-Synchronous-Mode: If set to true the test function uses synchronous mode,
otherwise the default asynchronous operation mode is used. This is mainly for
debugging purposes.
Host: This header is ignored and not forwarded to the DB server.
User-Agent: This header is ignored and not forwarded to the DB server.

All other HTTP headers and the body of the request (if present, see other HTTP methods
below) are forwarded as given in the original request.

In asynchronous mode the DB server answers with an HTTP request of its own, in
synchronous mode it sends a HTTP response. In both cases the headers and the body
are used to produce the HTTP response of this API call.

HTTP Interface for Sharding

Return Codes

The return code can be anything the cluster request returns, as well as:

200: is returned when everything went well, or if a timeout occurred. In the latter
case a body of type application/json indicating the timeout is returned.

403: is returned if ArangoDB is not running in cluster mode.

404: is returned if ArangoDB was not compiled for cluster operation.

executes a cluster roundtrip for sharding

Execute cluster roundtrip 	POST	/_admin/cluster-test	

body:

See GET method. The body can be any type and is simply forwarded.

executes a cluster roundtrip for sharding

Execute cluster roundtrip 	PUT	/_admin/cluster-test	

body:

See GET method. The body can be any type and is simply forwarded. //

executes a cluster roundtrip for sharding

Delete cluster roundtrip 	DELETE	/_admin/cluster-test	

See GET method. The body can be any type and is simply forwarded.

executes a cluster roundtrip for sharding

Update cluster roundtrip 	PATCH	/_admin/cluster-test	

body:

See GET method. The body can be any type and is simply forwarded.

executes a cluster roundtrip for sharding

Execute cluster roundtrip 	HEAD	/_admin/cluster-test	

See GET method. The body can be any type and is simply forwarded.

exposes the cluster planning functionality

Produce cluster startup plan 	POST	/_admin/clusterPlanner	

body:

Given a description of a cluster, this plans the details of a cluster and returns a JSON
description of a plan to start up this cluster.

Return Codes

200: is returned when everything went well.

400: the posted body was not valid JSON.

exposes the dispatcher functionality to start up, shutdown, relaunch, upgrade or cleanup
a cluster according to a cluster plan as for example provided by the kickstarter.

execute startup commands 	POST	/_admin/clusterDispatch	

body:

The body must be an object with the following properties:

clusterPlan: is a cluster plan (see JSF_cluster_planner_POST),
myname: is the ID of this dispatcher, this is used to decide which commands are
executed locally and which are forwarded to other dispatchers
action: can be one of the following:

"launch": the cluster is launched for the first time, all

data	directories	and	log	files	are	cleaned	and	created

"shutdown": the cluster is shut down, the additional property runInfo (see below)
must be bound as well
"relaunch": the cluster is launched again, all data directories

and	log	files	are	untouched	and	need	to	be	there	already

"cleanup": use this after a shutdown to remove all data in the

data	directories	and	all	log	files,	use	with	caution

"isHealthy": checks whether or not the processes involved

in	the	cluster	are	running	or	not.	The	additional	property

runInfo (see above) must be bound as well
"upgrade": performs an upgrade of a cluster, to this end,

the	agency	is	started,	and	then	every	server	is	once	started

with	the	"--upgrade"	option,	and	then	normally.	Finally,

the	script	"verion-check.js"	is	run	on	one	of	the	coordinators

for	the	cluster.

*runInfo": this is needed for the "shutdown" and "isHealthy" actions only and should
be the structure that "launch", "relaunch" or "upgrade" returned. It contains runtime
information like process IDs.

This call executes the plan by either doing the work personally or by delegating to other
dispatchers.

Return Codes

200: is returned when everything went well.

400: the posted body was not valid JSON, or something went wrong with the startup.

allows to check whether a given port is usable

Check port 	GET	/_admin/clusterCheckPort	

port:

Checks whether the requested port is usable.

Return Codes

200: is returned when everything went well.

400: the parameter port was not given or is no integer.

This is an overview of ArangoDB's HTTP interface for miscellaneous functions.

returns the server version number

Return server version 	GET	/_api/version	

details: If set to true, the response will contain a details attribute with additional
information about included components and their versions. The attribute names and
internals of the details object may vary depending on platform and ArangoDB
version.

Returns the server name and version number. The response is a JSON object with the
following attributes:

server: will always contain arango

version: the server version string. The string has the format "major.minor.sub". major
and minor will be numeric, and sub may contain a number or a textual version.

details: an optional JSON object with additional details. This is returned only if the
details URL parameter is set to true in the request.

Return Codes

200: is returned in all cases.

Examples

Returns the version information.

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/version

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

{	

		"server"	:	"arango",	

		"version"	:	"2.3.0-devel"	

}

HTTP Interface for Miscellaneous
functions

Returns the version information with details.

shell>	curl	--data-binary	@-	--dump	-	http://localhost:8529/_api/version?details=true

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

show response body
Flushes the write-ahead log 	PUT	/_admin/wal/flush	

waitForSync: Whether or not the operation should block until the not-yet
synchronized data in the write-ahead log was synchronized to disk.

waitForCollector: Whether or not the operation should block until the data in the
flushed log has been collected by the write-ahead log garbage collector. Note that
setting this option to true might block for a long time if there are long-running
transactions and the write-ahead log garbage collector cannot finish garbage
collection.

Flushes the write-ahead log. By flushing the currently active write-ahead logfile, the data
in it can be transferred to collection journals and datafiles. This is useful to ensure that all
data for a collection is present in the collection journals and datafiles, for example, when
dumping the data of a collection.

Return Codes

200: Is returned if the operation succeeds.

405: is returned when an invalid HTTP method is used.

Retrieves the configuration of the write-ahead log 	GET	/_admin/wal/properties	

Retrieves the configuration of the write-ahead log. The result is a JSON array with the
following attributes:

allowOversizeEntries: whether or not operations that are bigger than a single logfile
can be executed and stored
logfileSize: the size of each write-ahead logfile
historicLogfiles: the maximum number of historic logfiles to keep

reserveLogfiles: the maximum number of reserve logfiles that ArangoDB allocates in
the background
syncInterval: the interval for automatic synchronization of not-yet synchronized write-
ahead log data (in milliseconds)
throttleWait: the maximum wait time that operations will wait before they get aborted
if case of write-throttling (in milliseconds)
throttleWhenPending: the number of unprocessed garbage-collection operations
that, when reached, will activate write-throttling. A value of 0 means that write-
throttling will not be triggered.

Return Codes

200: Is returned if the operation succeeds.

405: is returned when an invalid HTTP method is used.

Configures the write-ahead log 	PUT	/_admin/wal/properties	

Configures the behavior of the write-ahead log. The body of the request must be a JSON
object with the following attributes:

allowOversizeEntries: whether or not operations that are bigger than a single logfile
can be executed and stored
logfileSize: the size of each write-ahead logfile
historicLogfiles: the maximum number of historic logfiles to keep
reserveLogfiles: the maximum number of reserve logfiles that ArangoDB allocates in
the background
throttleWait: the maximum wait time that operations will wait before they get aborted
if case of write-throttling (in milliseconds)
throttleWhenPending: the number of unprocessed garbage-collection operations
that, when reached, will activate write-throttling. A value of 0 means that write-
throttling will not be triggered.

Specifying any of the above attributes is optional. Not specified attributes will be ignored
and the configuration for them will not be modified.

Return Codes

200: Is returned if the operation succeeds.

405: is returned when an invalid HTTP method is used.

Return system time 	GET	/_admin/time	

The call returns an object with the attribute time. This contains the current system time as
a Unix timestamp with microsecond precision.

Return Codes

200: Time was returned successfully.

Return current request 	GET	/_admin/echo	

The call returns an object with the following attributes:

headers: a list of HTTP headers received

requestType: the HTTP request method (e.g. GET)

parameters: list of URL parameters received

Return Codes

200: Echo was returned successfully.

initiates the shutdown sequence

Initiate shutdown sequence 	GET	/_admin/shutdown	

This call initiates a clean shutdown sequence.

Return Codes

200: is returned in all cases.

Runs tests on server 	POST	/_admin/test	

body: A JSON body containing an attribute "tests" which lists the files containing the
test suites.

Executes the specified tests on the server and returns an object with the test results. The
object has an attribute "error" which states whether any error occurred. The object also
has an attribute "passed" which indicates which tests passed and which did not.

Execute program 	POST	/_admin/execute	

body: The body to be executed.

Executes the javascript code in the body on the server as the body of a function with no
arguments. If you have a return statement then the return value you produce will be
returned as content type application/json. If the parameter returnAsJSON is set to true,
the result will be a JSON object describing the return value directly, otherwise a string
produced by JSON.stringify will be returned.

ArangoDB exposes its API via HTTP, making the server accessible easily with a variety
of clients and tools (e.g. browsers, curl, telnet). The communication can optionally be
SSL-encrypted.

ArangoDB uses the standard HTTP methods (e.g. GET, POST, PUT, DELETE) plus the
PATCH method described in RFC 5789.

Most server APIs expect clients to send any payload data in JSON format. Details on the
expected format and JSON attributes can be found in the documentation of the individual
server methods.

Clients sending requests to ArangoDB must use either HTTP 1.0 or HTTP 1.1. Other
HTTP versions are not supported by ArangoDB and any attempt to send a different HTTP
version signature will result in the server responding with an HTTP 505 (HTTP version
not supported) error.

ArangoDB will always respond to client requests with HTTP 1.1. Clients should therefore
support HTTP version 1.1.

Clients are required to include the Content-Length HTTP header with the correct content
length in every request that can have a body (e.g. POST, PUT or PATCH) request.
ArangoDB will not process requests without a Content-Length header.

ArangoDB supports both blocking and non-blocking requests.

ArangoDB is a multi-threaded server, allowing the processing of multiple client requests
at the same time. Request/response handling and the actual work are performed on the
server in parallel by multiple worker threads.

Still, clients need to wait for their requests to be processed by the server. By default, the

General HTTP Request Handling in
ArangoDB

Protocol

Blocking vs. Non-blocking Requests

http://tools.ietf.org/html/rfc5789
http://www.json.org

server will fully process an incoming request and then return the result to the client when
the operation is finished. The client must wait for the server's response before it can send
additional requests over the same connection. For clients that are single-threaded and/or
are blocking on I/O themselves, waiting idle for the server response may be non-optimal.

To reduce blocking on the client side, ArangoDB since version 1.4 offers a generic
mechanism for non-blocking, asynchronous execution: clients can add the HTTP header
x-arango-async: true to any of their requests, marking them as to be executed
asynchronously on the server. ArangoDB will put such requests into an in-memory task
queue and return an HTTP 202 (accepted) response to the client instantly. The server will
execute the tasks from the queue asynchronously as fast as possible, while clients can
continue to work. If the server queue is full (i.e. contains as many tasks as specified by
the option "--scheduler.maximal-queue-size", then the request will be rejected instantly
with an HTTP 500 (internal server error) response.

Asynchronous execution decouples the request/response handling from the actual work
to be performed, allowing fast server responses and greatly reducing wait time for clients.
Overall this allows for much higher throughput than if clients would always wait for the
server's response.

Keep in mind that the asynchronous execution is just "fire and forget". Clients will get any
of their asynchronous requests answered with a generic HTTP 202 response. At the time
the server sends this response, it does not know whether the requested operation can be
carried out successfully (the actual operation execution will happen at some later point).
Clients therefore cannot make a decision based on the server response and must rely on
their requests being valid and processable by the server.

Additionally, the server's asynchronous task queue is an in-memory data structure,
meaning not-yet processed tasks from the queue might be lost in case of a crash. Clients
should therefore not use the asynchronous feature when they have strict durability
requirements or if they rely on the immediate result of the request they send.

ArangoDB supports HTTP keep-alive. If the client does not send a Connection header in
its request, and the client uses HTTP version 1.1, ArangoDB will assume the client wants
to keep alive the connection. If clients do not wish to use the keep-alive feature, they
should explicitly indicate that by sending a Connection: Close HTTP header in the
request.

HTTP Keep-Alive

ArangoDB will close connections automatically for clients that send requests using HTTP
1.0, except if they send an Connection: Keep-Alive header.

The default Keep-Alive timeout can be specified at server start using the --server.keep-
alive-timeout parameter.

Client authentication can be achieved by using the Authorization HTTP header in client
requests. ArangoDB supports HTTP Basic authentication.

Authentication is optional. To enforce authentication for incoming requested, the server
must be started with the option --server.disable-authentication. Please note that requests
using the HTTP OPTIONS method will be answered by ArangoDB in any case, even if no
authentication data is sent by the client or if the authentication data is wrong. This is
required for handling CORS preflight requests (see Cross Origin Resource Sharing
requests_requests)). The response to an HTTP OPTIONS request will be generic and not
expose any private data.

Please note that when authentication is turned on in ArangoDB, it will by default affect all
incoming requests.

Since ArangoDB 1.4, there is an additional option -server.authenticate-system-only "--
server.authenticate-system-only" to restrict authentication to requests to the ArangoDB
internal APIs and the admin interface. This option can be used to expose a public API
built with ArangoDB to the outside world without the need for HTTP authentication, but to
still protect the usage of the ArangoDB API (i.e. /_api/**) and the admin interface (i.e.
/_admin/**) with HTTP authentication.

If the server is started with the --server.authenticate-system-only parameter set to false
(which is the default), all incoming requests need HTTP authentication if the server is
configured to require HTTP authentication. Setting the option to false will make the server
require authentication only for requests to the internal functionality at /_api/ or /_admin
and will allow unauthenticated requests to all other URLs.

Whenever authentication is required and the client has not yet authenticated, ArangoDB
will return HTTP 401 (Unauthorized). It will also send the WWW-Authenticate response
header, indicating that the client should prompt the user for username and password if
supported. If the client is a browser, then sending back this header will normally trigger
the display of the browser-side HTTP authentication dialog. As showing the browser

Authentication

HTTP authentication dialog is undesired in AJAX requests, ArangoDB can be told to not
send the WWW-Authenticate header back to the client. Whenever a client sends the X-
Omit-WWW-Authenticate HTTP header (with an arbitrary value) to ArangoDB, ArangoDB
will only send status code 401, but no WWW-Authenticate header. This allows clients to
implement credentials handling and bypassing the browser's built-in dialog.

The following should be noted about how ArangoDB handles client errors in its HTTP
layer:

client requests using an HTTP version signature different than HTTP/1.0 or
HTTP/1.1 will get an HTTP 505 (HTTP version not supported) error in return.
ArangoDB will reject client requests with a negative value in the Content-Length
request header with HTTP 411 (Length Required).
the maximum URL length accepted by ArangoDB is 16K. Incoming requests with
longer URLs will be rejected with an HTTP 414 (Request-URI too long) error.
if the client sends a Content-Length header with a value bigger than 0 for an HTTP
GET, HEAD, or DELETE request, ArangoDB will process the request, but will write a
warning to its log file.
when the client sends a Content-Length header that has a value that is lower than
the actual size of the body sent, ArangoDB will respond with HTTP 400 (Bad
Request).
if clients send a Content-Length value bigger than the actual size of the body of the
request, ArangoDB will wait for about 90 seconds for the client to complete its
request. If the client does not send the remaining body data within this time,
ArangoDB will close the connection. Clients should avoid sending such malformed
requests as they will make ArangoDB block waiting for more data to arrive.
when clients send a body or a Content-Length value bigger than the maximum
allowed value (512 MB), ArangoDB will respond with HTTP 413 (Request Entity Too
Large).
if the overall length of the HTTP headers a client sends for one request exceeds the
maximum allowed size (1 MB), the server will fail with HTTP 431 (Request Header
Fields Too Large).
if clients request a HTTP method that is not supported by the server, ArangoDB will
return with HTTP 405 (Method Not Allowed). ArangoDB offers general support for
the following HTTP methods:

GET
POST

Error Handling

PUT
DELETE
HEAD
PATCH
OPTIONS

Please note that not all server actions allow using all of these HTTP methods. You
should look up up the supported methods for each method you intend to use in the
manual.

Requests using any other HTTP method (such as for example CONNECT, TRACE
etc.) will be rejected by ArangoDB.

ArangoDB will automatically handle CORS requests as follows:

when the client sends an Origin HTTP header, ArangoDB will return a header
access-control-allow-origin containing the value the client sent in the Origin header.
for non-trivial CORS requests, clients may issue a preflight request via an additional
HTTP OPTIONS request. ArangoDB will automatically answer such preflight HTTP
OPTIONS requests with an HTTP 200 response with an empty body. ArangoDB will
return the following headers in the response:

access-control-allow-origin: will contain the value that the client provided in the
Origin header of the request
access-control-allow-methods: will contain a list of all HTTP methods generally
supported by ArangoDB. This list does not depend on the URL the client
requested and is the same for all CORS requests.
access-control-allow-headers: will contain exactly the value that the client has
provided in the Access-Control-Request-Header header of the request. This
header will only be returned if the client has specified the header in the request.
ArangoDB will send back the original value without further validation.
access-control-max-age: will return a cache lifetime for the preflight response as
determined by ArangoDB.

any access-control-allow-credentials header sent by the client is ignored by
ArangoDB its value is not true. If a client sends a header value of true, ArangoDB will
return the header access-control-allow-credentials: true, too.

Note that CORS preflight requests will probably not send any authentication data with

Cross Origin Resource Sharing (CORS)
requests

them. One of the purposes of the preflight request is to check whether the server accepts
authentication or not.

A consequence of this is that ArangoDB will allow requests using the HTTP OPTIONS
method without credentials, even when the server is run with authentication enabled.

The response to the HTTP OPTIONS request will however be a generic response that
will not expose any private data and thus can be considered "safe" even without
credentials.

Since version 1.4, ArangoDB provides a startup option --server.allow-method-override.
This option can be set to allow overriding the HTTP request method (e.g. GET, POST,
PUT, DELETE, PATCH) of a request using one of the following custom HTTP headers:

x-http-method-override
x-http-method
x-method-override

This allows using HTTP clients that do not support all "common" HTTP methods such as
PUT, PATCH and DELETE. It also allows bypassing proxies and tools that would
otherwise just let certain types of requests (e.g. GET and POST) pass through.

Enabling this option may impose a security risk, so it should only be used in very
controlled environments. Thus the default value for this option is false (no method
overriding allowed). You need to enable it explicitly if you want to use this feature.

HTTP method overriding

Introduction to Javascript Modules

The ArangoDB uses a CommonJS compatible module and package concept. You can
use the function require in order to load a module or package. It returns the exported
variables and functions of the module or package.

There are some extensions to the CommonJS concept to allow ArangoDB to load
Node.js modules as well.

Unfortunately, the JavaScript libraries are just in the process of being standardized.
CommonJS has defined some important modules. ArangoDB implements the following

"console" is a well known logging facility to all the JavaScript developers. ArangoDB
implements all of the functions described here, with the exceptions of profile and
count.

"fs" provides a file system API for the manipulation of paths, directories, files, links,
and the construction of file streams. ArangoDB implements most of Filesystem/A
functions described here.

Modules are implemented according to Modules/1.1.1

Packages are implemented according to Packages/1.0

ArangoDB Specific Modules

A lot of the modules, however, are ArangoDB specific. These modules are described in
the following chapters.

Node Modules

ArangoDB also supports some node modules.

"assert" implements assertion and testing functions.

JavaScript Modules

CommonJS Modules

http://wiki.commonjs.org/wiki
http://wiki.commonjs.org/wiki/Console
http://wiki.commonjs.org/wiki/Filesystem/A
http://wiki.commonjs.org/wiki/Modules
http://wiki.commonjs.org/wiki/Packages
http://www.nodejs.org/
http://nodejs.org/api/assert.html

"buffer" implements a binary data type for JavaScript.

"path" implements functions dealing with filenames and paths.

"punycode" implements conversion functions for punycode encoding.

"querystring" provides utilities for dealing with query strings.

"stream" provides a streaming interface.

"url" has utilities for URL resolution and parsing.

Node Packages

The following node packages are preinstalled.

"buster-format"

"Cheerio.JS"

"coffee-script" implements a coffee-script to JavaScript compiler. ArangoDB supports
the compile function of the package, but not the eval functions.

"htmlparser2"

"Sinon.JS"

"underscore" is a utility-belt library for JavaScript that provides a lot of the functional
programming support that you would expect in Prototype.js (or Ruby), but without
extending any of the built-in JavaScript objects.

Other node modules may be installed and used in ArangoDB, too. However, only those
modules will work in ArangoDB that do not refer to node.js-internal variables or methods
and do not include further node modules that do so.

require

	require(path)	

require checks if the module or package specified by path has already been loaded. If
not, the content of the file is executed in a new context. Within the context you can use
the global variable exports in order to export variables and functions. This variable is
returned by require.

http://nodejs.org/api/buffer.html
http://nodejs.org/api/path.html
http://nodejs.org/api/punycode.html
http://en.wikipedia.org/wiki/Punycode
http://nodejs.org/api/querystring.html
http://nodejs.org/api/stream.html
http://nodejs.org/api/url.html
https://npmjs.org/
http://docs.busterjs.org/en/latest/modules/buster-format/
http://matthewmueller.github.io/cheerio/
http://coffeescript.org/
https://github.com/fb55/htmlparser2
http://sinonjs.org/
http://underscorejs.org/

Assume that your module file is test1.js and contains

exports.func1	=	function()	{

		print("1");

};

exports.const1	=	1;

Then you can use require to load the file and access the exports.

unix>	./arangosh

arangosh>	var	test1	=	require("test1");

arangosh>	test1.const1;

1

arangosh>	test1.func1();

1

require follows the specification Modules/1.1.1.

ArangoDB comes with predefined modules defined in the file-system under the path
specified by startup.startup-directory. In a standard installation this point to the system
share directory. Even if you are an administrator of ArangoDB you might not have write
permissions to this location. On the other hand, in order to deploy some extension for
ArangoDB, you might need to install additional JavaScript modules. This would require
you to become root and copy the files into the share directory. In order to ease the
deployment of extensions, ArangoDB uses a second mechanism to look up JavaScript
modules.

JavaScript modules can either be stored in the filesystem as regular file or in the
database collection _modules.

If you execute

require("com/example/extension")

then ArangoDB will try to locate the corresponding JavaScript as file as follows

Modules Path versus Modules Collection

http://wiki.commonjs.org/wiki/Modules/1.1.1

There is a cache for the results of previous require calls. First of all ArangoDB
checks if com/example/extension is already in the modules cache. If it is, the export
object for this module is returned. No further JavaScript is executed.

ArangoDB will then check, if there is a file called com/example/extension.js in the
system search path. If such a file exists, it is executed in a new module context and
the value of exports object is returned. This value is also stored in the module cache.

If no file can be found, ArangoDB will check if the collection _modules contains a
document of the form

{

		path:	"/com/example/extension",

		content:	"...."

}

Note: The leading / is important - even if you call require without a leading /. If such a
document exists, then the value of the content attribute must contain the JavaScript code
of the module. This string is executed in a new module context and the value of exports
object is returned. This value is also stored in the module cache.

!SUBSECTION Modules Cache

As require uses a module cache to store the exports objects of the required modules,
changing the design documents for the modules in the _modules collection might have
no effect at all.

You need to clear the cache, when manually changing documents in the _modules
collection.

arangosh>	require("internal").flushServerModules()

This initiate a flush of the modules in the ArangoDB server process.

Please note, that the ArangoDB JavaScript shell uses the same mechanism as the server
to locate JavaScript modules. But the do not share the same module cache. If you flush
the server cache, this will not flush the shell cache - and vice versa.

In order to flush the modules cache of the JavaScript shell, you should use

arangosh>	require("internal").flushModuleCache()

The implementation follows the CommonJS specification Console.

console.assert

	console.assert(expression,	format,	argument1,	...)	

Tests that an expression is true. If not, logs a message and throws an exception.

Examples

console.assert(value	===	"abc",	"expected:	value	===	abc,	actual:",	value);

console.debug

	console.debug(format,	argument1,	...)	

Formats the arguments according to format and logs the result as debug message. Note
that debug messages will only be logged if the server is started with log levels debug or
trace.

String substitution patterns, which can be used in format.

%%s string
%%d, %%i integer
%%f floating point number
%%o object hyperlink

Examples

console.debug("%s",	"this	is	a	test");

console.dir

	console.dir(object)	

Logs a listing of all properties of the object.

Console Module

http://wiki.commonjs.org/wiki/Console

Example usage:

console.dir(myObject);

console.error

	console.error(format,	argument1,	...)	

Formats the arguments according to @FA{format} and logs the result as error message.

String substitution patterns, which can be used in format.

%%s string
%%d, %%i integer
%%f floating point number
%%o object hyperlink

Example usage:

console.error("error	'%s':	%s",	type,	message);

console.getline

	console.getline()	

Reads in a line from the console and returns it as string.

console.group

	console.group(format,	argument1,	...)	

Formats the arguments according to format and logs the result as log message. Opens a
nested block to indent all future messages sent. Call groupEnd to close the block.
Representation of block is up to the platform, it can be an interactive block or just a set of
indented sub messages.

Example usage:

console.group("user	attributes");

console.log("name",	user.name);

console.log("id",	user.id);

console.groupEnd();

console.groupCollapsed

	console.groupCollapsed(format,	argument1,	...)	

Same as console.group, but with the group initially collapsed.

console.groupEnd

	console.groupEnd()	

Closes the most recently opened block created by a call to group.

console.info

	console.info(format,	argument1,	...)	

Formats the arguments according to format and logs the result as info message.

String substitution patterns, which can be used in format.

%%s string
%%d, %%i integer
%%f floating point number
%%o object hyperlink

Example usage:

console.info("The	%s	jumped	over	%d	fences",	animal,	count);

console.log

	console.log(format,	argument1,	...)	

Formats the arguments according to format and logs the result as log message. This is
an alias for console.info.

console.time

	console.time(name)	

Creates a new timer under the given name. Call timeEnd with the same name to stop the

timer and log the time elapsed.

Example usage:

console.time("mytimer");

...

console.timeEnd("mytimer");	//	this	will	print	the	elapsed	time

console.timeEnd

	console.timeEnd(name)	

Stops a timer created by a call to time and logs the time elapsed.

console.timeEnd

	console.trace()	

Logs a stack trace of JavaScript execution at the point where it is called.

console.warn

	console.warn(format,	argument1,	...)	

Formats the arguments according to format and logs the result as warn message.

String substitution patterns, which can be used in format.

%%s string
%%d, %%i integer
%%f floating point number
%%o object hyperlink

File System Module

The implementation follows the CommonJS specification Filesystem/A/0.

	fs.exists(path)	

Returns true if a file (of any type) or a directory exists at a given path. If the file is a
broken symbolic link, returns false.

	fs.isDirectory(path)	

Returns true if the path points to a directory.

	fs.isFile(path)	

Returns true if the path points to a file.

	fs.list(path)	

The functions returns the names of all the files in a directory, in lexically sorted order.
Throws an exception if the directory cannot be traversed (or path is not a directory).

Note: this means that list("x") of a directory containing "a" and "b" would return ["a", "b"],
not ["x/a", "x/b"].

	fs.listTree(path)	

The function returns an array that starts with the given path, and all of the paths relative
to the given path, discovered by a depth first traversal of every directory in any visited
directory, reporting but not traversing symbolic links to directories. The first path is always
"", the path relative to itself.

	fs.move(source,	destination)	

Moves source to destination. Failure to move the file, or specifying a directory for target
when source is a file will throw an exception.

	fs.read(filename)	

Reads in a file and returns the content as string. Please note that the file content must be

Module "fs"

http://wiki.commonjs.org/wiki/Filesystem/A/0

encoded in UTF-8.

	fs.read64(filename)	

Reads in a file and returns the content as string. The file content is Base64 encoded.

	fs.remove(filename)	

Removes the file filename at the given path. Throws an exception if the path corresponds
to anything that is not a file or a symbolic link. If "path" refers to a symbolic link, removes
the symbolic link.

Warning: Deprecated

First Steps with Graphs

A Graph consists of vertices and edges. The vertex collection contains the documents
forming the vertices. The edge collection contains the documents forming the edges.
Together both collections form a graph. Assume that the vertex collection is called
vertices and the edges collection edges, then you can build a graph using the Graph
constructor.

arango>	var	Graph	=	require("org/arangodb/graph").Graph;

arango>	g1	=	new	Graph("graph",	"vertices",	"edges");

Graph("vertices",	"edges")

It is possible to use different edges with the same vertices. For instance, to build a new
graph with a different edge collection use

arango>	var	Graph	=	require("org/arangodb/graph").Graph;

arango>	g2	=	new	Graph("graph",	"vertices",	"alternativeEdges");

Graph("vertices",	"alternativeEdges")

It is, however, impossible to use different vertices with the same edges. Edges are tied to
the vertices.

Module "graph"

The graph module provides basic functions dealing with graph structures. The examples
assume

arango>	var	Graph	=	require("org/arangodb/graph").Graph;

arango>	g	=	new	Graph("graph",	"vertices",	"edges");

Graph("graph")

	Graph(name,	vertices,	edges)	

Constructs a new graph object using the collection vertices for all vertices and the
collection edges for all edges. Note that it is possible to construct two graphs with the
same vertex set, but different edge sets.

	Graph(name)	

Returns a known graph.

Examples

arango>	var	Graph	=	require("org/arangodb/graph").Graph;

arango>	new	Graph("graph",	db.vertices,	db.edges);

Graph("graph")

arango>	new	Graph("graph",	"vertices",	"edges");

Graph("graph")

	graph.addEdge(out,	in,	id)	

Creates a new edge from out to in and returns the edge object. The identifier id must be a
unique identifier or null. out and in can either be vertices or their IDs

	graph.addEdge(out,	in,	id,	label)	

Creates a new edge from out to in with label and returns the edge object. out and in can
either be vertices or their IDs

	graph.addEdge(out,	in,	id,	data)	

Graph Constructors and Methods

Creates a new edge and returns the edge object. The edge contains the properties
defined in data. out and in can either be vertices or their IDs

	graph.addEdge(out,	in,	id,	label,	data)	

Creates a new edge and returns the edge object. The edge has the label label and
contains the properties defined in data. out and in can either be vertices or their IDs

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	v2	=	g.addVertex(2);

Vertex(2)

arango>	e	=	g.addEdge(v1,	v2,	3);

Edge(3)

arango>	e	=	g.addEdge(v1,	v2,	4,	"1->2",	{	name	:	"Emil");

Edge(4)

	graph.addVertex(id)	

Creates a new vertex and returns the vertex object. The identifier id must be a unique
identifier or null.

	graph.addVertex(id,	data)	

Creates a new vertex and returns the vertex object. The vertex contains the properties
defined in data.

Examples

Without any properties:

arango>	v	=	g.addVertex("hugo");

Vertex("hugo")

With	given	properties:

arango>	v	=	g.addVertex("Emil",	{	age	:	123	});

Vertex("Emil")

arango>	v.getProperty("age");

123

	graph.getEdges()	

Returns an iterator for all edges of the graph. The iterator supports the methods hasNext
and next.

Examples

arango>	f	=	g.getEdges();

[edge	iterator]

arango>	f.hasNext();

true

arango>	e	=	f.next();

Edge("4636053")

graph.getVertex(id)

Returns	the	vertex	identified	by	id	or	null.

Examples

arango>	g.addVertex(1);

Vertex(1)

arango>	g.getVertex(1)

Vertex(1)

	graph.getVertices()	

Returns an iterator for all vertices of the graph. The iterator supports the methods
hasNext and next.

Examples

arango>	f	=	g.getVertices();

[vertex	iterator]

arango>	f.hasNext();

true

arango>	v	=	f.next();

Vertex(18364)

	graph.removeVertex(vertex,	waitForSync)	

Deletes the vertex and all its edges.

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	v2	=	g.addVertex(2);

Vertex(2)

arango>	e	=	g.addEdge(v1,	v2,	3);

Edge(3)

arango>	g.removeVertex(v1);

arango>	v2.edges();

[]

	graph.removeEdge(vertex,	waitForSync)	

Deletes the edge. Note that the in and out vertices are left untouched.

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	v2	=	g.addVertex(2);

Vertex(2)

arango>	e	=	g.addEdge(v1,	v2,	3);

Edge(3)

arango>	g.removeEdge(e);

arango>	v2.edges();

[]

	graph.drop(waitForSync)	

Drops the graph, the vertices, and the edges. Handle with care.

	graph.getAll()	

Returns all available graphs.

	graph.geodesics(options)	

Return all shortest paths An optional options JSON object can be specified to control the
result. options can have the following sub-attributes:

grouped: if not specified or set to false, the result will be a flat list. If set to true, the
result will be a list containing list of paths, grouped for each combination of source
and target.
threshold: if not specified, all paths will be returned. If threshold is true, only paths
with a minimum length of 3 will be returned

	graph.measurement(measurement)	

Calculates the diameter or radius of a graph. measurement can either be:

diameter: to calculate the diameter
radius: to calculate the radius

	graph.normalizedMeasurement(measurement)	

Calculates the normalized degree, closeness, betweenness or eccentricity of all vertices
in a graph measurement can either be:

closeness: to calculate the closeness
betweenness: to calculate the betweenness
eccentricity: to calculate the eccentricity

	vertex.addInEdge(peer,	id)	

Creates a new edge from peer to vertex and returns the edge object. The identifier id
must be a unique identifier or null.

	vertex.addInEdge(peer,	id,	label)	

Creates a new edge from peer to vertex with given label and returns the edge object.

	vertex.addInEdge(peer,	id,	label,	data)	

Creates a new edge from peer to vertex with given label and properties defined in data.
Returns the edge object.

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	v2	=	g.addVertex(2);

Vertex(2)

arango>	v1.addInEdge(v2,	"2	->	1");

Edge("2	->	1")

arango>	v1.getInEdges();

[Edge("2	->	1")]

arango>	v1.addInEdge(v2,	"D",	"knows",	{	data	:	1	});

Edge("D")

arango>	v1.getInEdges();

[Edge("K"),	Edge("2	->	1"),	Edges("D")]

	vertex.addOutEdge(peer)	

Creates a new edge from vertex to peer and returns the edge object.

	vertex.addOutEdge(peer,	label)	

Creates a new edge from vertex to peer with given label and returns the edge object.

	vertex.addOutEdge(peer,	label,	data)	

Vertex Methods

Creates a new edge from vertex to peer with given label and properties defined in data.
Returns the edge object.

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	v2	=	g.addVertex(2);

Vertex(2)

arango>	v1.addOutEdge(v2,	"1->2");

Edge("1->2")

arango>	v1.getOutEdges();

[Edge(1->2")]

arango>	v1.addOutEdge(v2,	3,	"knows");

Edge(3)

arango>	v1.addOutEdge(v2,	4,	"knows",	{	data	:	1	});

Edge(4)

	vertex.edges()	

Returns a list of in- or outbound edges of the vertex.

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	v2	=	g.addVertex();	

Vertex(2)

arango>	e	=	g.addEdge(v1,	v2,	"1->2");

Edge("1->2")

arango>	v1.edges();

[Edge("1->2")]

arango>	v2.edges();

[Edge("1->2")]

	vertex.getId()	

Returns the identifier of the vertex. If the vertex was deleted, then undefined is returned.

Examples

arango>	v	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v.getId();

"1"

	vertex.getInEdges(label,	...)	

Returns a list of inbound edges of the vertex with given label(s).

Examples

arango>	v1	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v2	=	g.addVertex(2,	{	name	:	"Emil"	});	

Vertex(2)

arango>	e1	=	g.addEdge(v1,	v2,	3,	"knows");

Edge(3)

arango>	e2	=	g.addEdge(v1,	v2,	4,	"hates");

Edge(4)

arango>	v2.getInEdges();

[Edge(3),	Edge(4)]

arango>	v2.getInEdges("knows");

[Edge(3)]

arango>	v2.getInEdges("hates");

[Edge(4)]

arango>	v2.getInEdges("knows",	"hates");

[Edge(3),	Edge(4)]

	vertex.getOutEdges(label,	...)	

Returns a list of outbound edges of the vertex with given label(s).

Examples

arango>	v1	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v2	=	g.addVertex(2,	{	name	:	"Emil"	});	

Vertex(2)

arango>	e1	=	g.addEdge(v1,	v2,	3,	"knows");

Edge(3)

arango>	e2	=	g.addEdge(v1,	v2,	4,	"hates");

Edge(4)

arango>	v1.getOutEdges();

[Edge(3),	Edge(4)]

arango>	v1.getOutEdges("knows");

[Edge(3)]

arango>	v1.getOutEdges("hates");

[Edge(4)]

arango>	v1.getOutEdges("knows",	"hates");

[Edge(3),	Edge(4)]

	vertex.getEdges(label,	...)	

Returns a list of in- or outbound edges of the vertex with given label(s).

	vertex.getProperty(name)	

Returns the property name a vertex.

Examples

arango>	v	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v.getProperty("name");

Hugo

	vertex.getPropertyKeys()	

Returns all propety names a vertex.

Examples

arango>	v	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v.getPropertyKeys();

["name"]

arango>	v.setProperty("email",	"hugo@hugo.de");

"hugo@hugo.de"

arango>	v.getPropertyKeys();

["name",	"email"]

	vertex.properties()	 Returns all properties and their values of a vertex

Examples

arango>	v	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v.properties();

{	name	:	"Hugo"	}

	vertex.setProperty(name,	value)	

Changes or sets the property name a vertex to value.

Examples

arango>	v	=	g.addVertex(1,	{	name	:	"Hugo"	});

Vertex(1)

arango>	v.getProperty("name");

"Hugo"

arango>	v.setProperty("name",	"Emil");

"Emil"

arango>	v.getProperty("name");

"Emil"

	vertex.commonNeighborsWith(target_vertex,	options)	

	vertex.commonPropertiesWith(target_vertex,	options)	

	vertex.pathTo(target_vertex,	options)	

	vertex.distanceTo(target_vertex,	options)	

	vertex.determinePredecessors(source,	options)	

	vertex.pathesForTree(tree,	path_to_here)	

	vertex.getNeighbors(options)	

	vertex.measurement(measurement)	

Calculates the eccentricity, betweenness or closeness of the vertex

	edge.getId()	

Returns the identifier of the edge.

Examples

arango>	v	=	g.addVertex("v");

Vertex("v")

arango>	e	=	g.addEdge(v,	v,	1,	"self");

Edge(1)

arango>	e.getId();

1

	edge.getInVertex()	

Returns the vertex at the head of the edge.

Examples

arango>	v1	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"self");

Edge(2)

arango>	e.getInVertex();

Vertex(1)

	edge.getLabel()	

Returns the label of the edge.

Examples

arango>	v	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"knows");

Edge(2)

Edge Methods

arango>	e.getLabel();

knows

	edge.getOutVertex()	

Returns the vertex at the tail of the edge.

Examples

arango>	v	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"self");

Edge(2)

arango>	e.getOutVertex();

Vertex(1)

	edge.getPeerVertex(vertex)	

Returns the peer vertex of the edge and the vertex.

Examples

arango>	v1	=	g.addVertex("1");

Vertex("1")

arango>	v2	=	g.addVertex("2");

Vertex("2")

arango>	e	=	g.addEdge(v1,	v2,	"1->2",	"knows");

Edge("1->2")

arango>	e.getPeerVertex(v1);

Vertex(2)

	edge.getProperty(name)	

Returns the property name an edge.

Examples

arango>	v	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"self",	{	"weight"	:	10	});

Edge(2)

arango>	e.getProperty("weight");

10

	edge.getPropertyKeys()	

Returns all propety names an edge.

Examples

arango>	v	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"self",	{	weight:	10	})

Edge(2)

arango>	e.getPropertyKeys()

["weight"]

arango>	e.setProperty("name",	"Hugo");

Hugo

arango>	e.getPropertyKeys()

["weight",	"name"]

	edge.properties()	

Returns all properties and their values of an edge

Examples

arango>	v	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"knows");

Edge(2)

arango>	e.properties();

{	"weight"	:	10	}

	edge.setProperty(name,	value)	

Changes or sets the property name an edges to value.

Examples

arango>	v	=	g.addVertex(1);

Vertex(1)

arango>	e	=	g.addEdge(v,	v,	2,	"self",	{	weight:	10	})

Edge(2)

arango>	e.getPropert("weight")

10

arango>	e.setProperty("weight",	20);

20

arango>	e.getPropert("weight")

20

The action module provides the infrastructure for defining HTTP actions.

Error message

	actions.getErrorMessage(code)	

Returns the error message for an error code.

Result ok

	actions.resultOk(req,	res,	code,	result,	headers)	

The function defines a response. code is the status code to return. result is the result
object, which will be returned as JSON object in the body. headers is an array of headers
to returned. The function adds the attribute error with value false and code with value
code to the result. Result bad

	actions.resultBad(req,	res,	error-code,	msg,	headers)	

The function generates an error response. Result not found

	actions.resultNotFound(req,	res,	code,	msg,	headers)	

The function generates an error response. Result unsupported

	actions.resultUnsupported(req,	res,	headers)	

The function generates an error response. Result error

actions.resultError(req, res, code, errorNum, errorMessage, headers, keyvals)*

The function generates an error response. The response body is an array with an
attribute errorMessage containing the error message errorMessage, error containing true,
code containing code, errorNum containing errorNum, and errorMessage containing the

Module "actions"

Basics

Standard HTTP Result Generators

error message errorMessage. keyvals are mixed into the result. Result not Implemented

	actions.resultNotImplemented(req,	res,	msg,	headers)	

The function generates an error response. Result permanent redirect

	actions.resultPermanentRedirect(req,	res,	options,	headers)	

The function generates a redirect response. Result temporary redirect

	actions.resultTemporaryRedirect(req,	res,	options,	headers)	

The function generates a redirect response.

Collection not found

	actions.collectionNotFound(req,	res,	collection,	headers)	

The function generates an error response. Index not found

	actions.indexNotFound(req,	res,	collection,	index,	headers)	

The function generates an error response. Result exception

	actions.resultException(req,	res,	err,	headers,	verbose)	

The function generates an error response. If @FA{verbose} is set to true or not specified
(the default), then the error stack trace will be included in the error message if available.

ArangoDB Result Generators

Cluster Module

This module contains functions to plan, launch and shutdown clusters of ArangoDB
instances. We distinguish between the planning phase of a cluster and the startup phase.
The planning involves determining how many processes in which role to run on which
server, what ports and endpoints to use, as well as the sequence of events to startup the
whole machinery. The result of such a planning phase is a "cluster plan". This in turn can
be given to a "Kickstarter", which uses the plan to actually fire up the necessary
processes. This is done via "dispatchers". A dispatcher is nothing but a regular
ArangoDB instance, compiled with the cluster extensions, but not running in cluster
mode. It exposes a REST API to help in the planning and running of a cluster, mainly by
starting up further processes on the local machine. The planner needs a complete
description of all dispatchers in the system, which basically describes the set of machines
used for the cluster. These dispatchers are also used during the planning to find free
network ports.

Here are the details of the functionality:

Require

new require("org/arangodb/cluster").Planner(userConfig)

This constructor builds a cluster planner object. The one and only argument is an object
that can have the properties described below. The planner can plan clusters on a single
machine (basically for testing purposes) and on multiple machines. The resulting "cluster
plans" can be used by the kickstarter to start up the processes comprising the cluster,
including the agency. To this end, there has to be one dispatcher on every machine
participating in the cluster. A dispatcher is a simple instance of ArangoDB, compiled with
the cluster extensions, but not running in cluster mode. This is why the configuration
option dispatchers below is of central importance.

dispatchers: an object with a property for each dispatcher, the property name is the
ID of the dispatcher and the value should be an object with at least the property
endpoint containing the endpoint of the corresponding dispatcher. Further optional
properties are:

avoidPorts which is an object

Module "planner"

in	which	all	port	numbers	that	should	not	be	used	are	bound	to

true, default is empty, that is, all ports can be used
arangodExtraArgs, which is a list of additional

command	line	arguments	that	will	be	given	to	DBservers	and

coordinators	started	by	this	dispatcher,	the	default	is

an	empty	list.	These	arguments	will	be	appended	to	those

produced	automatically,	such	that	one	can	overwrite

things	with	this.

allowCoordinators, which is a boolean value indicating

whether	or	not	coordinators	should	be	started	on	this

dispatcher,	the	default	is	*true*

allowDBservers, which is a boolean value indicating

whether	or	not	DBservers	should	be	started	on	this	dispatcher,

the	default	is	*true*

allowAgents, which is a boolean value indicating whether or

not	agents	should	be	started	on	this	dispatcher,	the	default	is

true
username, which is a string that contains the user name

for	authentication	with	this	dispatcher

passwd, which is a string that contains the password

for	authentication	with	this	dispatcher,	if	not	both

username and passwd are set, then no authentication

is	used	between	dispatchers.	Note	that	this	will	not	work

if	the	dispatchers	are	configured	with	authentication.

If	*.dispatchers*	is	empty	(no	property),	then	an	entry	for	the

local	arangod	itself	is	automatically	added.	Note	that	if	the

only	configured	dispatcher	has	endpoint	*tcp://localhost:*,

all	processes	are	started	in	a	special	"local"	mode	and	are

configured	to	bind	their	endpoints	only	to	the	localhost	device.

In	all	other	cases	both	agents	and	*arangod*	instances	bind

their	endpoints	to	all	available	network	devices.

numberOfAgents: the number of agents in the agency, usually there is no reason to
deviate from the default of 3. The planner distributes them amongst the dispatchers,
if possible.
agencyPrefix: a string that is used as prefix for all keys of configuration data stored in
the agency.
numberOfDBservers: the number of DBservers in the cluster. The planner distributes
them evenly amongst the dispatchers.
startSecondaries: a boolean flag indicating whether or not secondary servers are
started. In this version, this flag is silently ignored, since we do not yet have
secondary servers.
numberOfCoordinators: the number of coordinators in the cluster, the planner
distributes them evenly amongst the dispatchers.
DBserverIDs: a list of DBserver IDs (strings). If the planner runs out of IDs it creates
its own ones using DBserver concatenated with a unique number.
coordinatorIDs: a list of coordinator IDs (strings). If the planner runs out of IDs it
creates its own ones using Coordinator concatenated with a unique number.
dataPath: this is a string and describes the path under which the agents, the
DBservers and the coordinators store their data directories. This can either be an
absolute path (in which case all machines in the clusters must use the same path),
or it can be a relative path. In the latter case it is relative to the directory that is
configured in the dispatcher with the cluster.data-path option (command line or
configuration file). The directories created will be called data-PREFIX-ID where
PREFIX is replaced with the agency prefix (see above) and ID is the ID of the
DBserver or coordinator.
logPath: this is a string and describes the path under which the DBservers and the
coordinators store their log file. This can either be an absolute path (in which case all
machines in the cluster must use the same path), or it can be a relative path. In the
latter case it is relative to the directory that is configured in the dispatcher with the
cluster.log-path option.
arangodPath: this is a string and describes the path to the actual executable arangod
that will be started for the DBservers and coordinators. If this is an absolute path, it
obviously has to be the same on all machines in the cluster as described for
dataPath. If it is an empty string, the dispatcher uses the executable that is
configured with the cluster.arangod-path option, which is by default the same

executable as the dispatcher uses.
agentPath: this is a string and describes the path to the actual executable that will be
started for the agents in the agency. If this is an absolute path, it obviously has to be
the same on all machines in the cluster, as described for arangodPath. If it is an
empty string, the dispatcher uses its cluster.agent-path option.
agentExtPorts: a list of port numbers to use for the external ports of the agents.
When running out of numbers in this list, the planner increments the last one used by
one for every port needed. Note that the planner checks availability of the ports
during the planning phase by contacting the dispatchers on the different machines,
and uses only ports that are free during the planning phase. Obviously, if those ports
are connected before the actual startup, things can go wrong.
agentIntPorts: a list of port numbers to use for the internal ports of the agents. The
same comments as for agentExtPorts apply.
DBserverPorts: a list of port numbers to use for the DBservers. The same comments
as for agentExtPorts apply.
coordinatorPorts: a list of port numbers to use for the coordinators. The same
comments as for agentExtPorts apply.
useSSLonDBservers: a boolean flag indicating whether or not we use SSL on all
DBservers in the cluster
useSSLonCoordinators: a boolean flag indicating whether or not we use SSL on all
coordinators in the cluster
valgrind: a string to contain the path of the valgrind binary if we should run the cluster
components in it
valgrindopts: commandline options to the valgrind process
valgrindXmlFileBase: pattern for logfiles
valgrindTestname: name of test to add to the logfiles

All these values have default values. Here is the current set of default values:

{

		"agencyPrefix"												:	"arango",

		"numberOfAgents"										:	1,

		"numberOfDBservers"							:	2,

		"startSecondaries"								:	false,

		"numberOfCoordinators"				:	1,

		"DBserverIDs"													:	["Pavel",	"Perry",	"Pancho",	"Paul",	"Pierre",

																															"Pit",	"Pia",	"Pablo"],

		"coordinatorIDs"										:	["Claus",	"Chantalle",	"Claire",	"Claudia",

																															"Claas",	"Clemens",	"Chris"],

		"dataPath"																:	"",			//	means	configured	in	dispatcher

		"logPath"																	:	"",			//	means	configured	in	dispatcher

		"arangodPath"													:	"",			//	means	configured	as	dispatcher

		"agentPath"															:	"",			//	means	configured	in	dispatcher

		"agentExtPorts"											:	[4001],

		"agentIntPorts"											:	[7001],

		"DBserverPorts"											:	[8629],

		"coordinatorPorts"								:	[8530],

		"dispatchers"													:	{"me":	{"endpoint":	"tcp://localhost:"}},

																														//	this	means	only	we	as	a	local	instance

		"useSSLonDBservers"							:	false,

		"useSSLonCoordinators"				:	false

};

Get Plan

	Planner.getPlan()	

returns the cluster plan as a JavaScript object. The result of this method can be given to
the constructor of a Kickstarter. Require

	new	require("org/arangodb/cluster").Kickstarter(plan)	

This constructor constructs a kickstarter object. Its first argument is a cluster plan as for
example provided by the planner (see Cluster Planner Constructor and the general
explanations before this reference). The second argument is optional and is taken to be
"me" if omitted, it is the ID of the dispatcher this object should consider itself to be. If the
plan contains startup commands for the dispatcher with this ID, these commands are
executed immediately. Otherwise they are handed over to another responsible dispatcher
via a REST call.

The resulting object of this constructors allows to launch, shutdown, relaunch the cluster
described in the plan. Launch

	Kickstarter.launch()	

This starts up a cluster as described in the plan which was given to the constructor. To
this end, other dispatchers are contacted as necessary. All startup commands for the
local dispatcher are executed immediately.

The result is an object that contains information about the started processes, this object
is also stored in the Kickstarter object itself. We do not go into details here about the data
structure, but the most important information are the process IDs of the started
processes. The corresponding shutdown method needs this information to shut down all
processes.

Note that all data in the DBservers and all log files and all agency information in the
cluster is deleted by this call. This is because it is intended to set up a cluster for the first
time. See the relaunch method for restarting a cluster without data loss. Shutdown

	Kickstarter.shutdown()	

This shuts down a cluster as described in the plan which was given to the constructor. To
this end, other dispatchers are contacted as necessary. All processes in the cluster are
gracefully shut down in the right order. Relaunch

	Kickstarter.relaunch()	

This starts up a cluster as described in the plan which was given to the constructor. To
this end, other dispatchers are contacted as necessary. All startup commands for the
local dispatcher are executed immediately.

The result is an object that contains information about the started processes, this object
is also stored in the Kickstarter object itself. We do not go into details here about the data
structure, but the most important information are the process IDs of the started
processes. The corresponding shutdown method needs this information to shut down all
processes.

Note that this methods needs that all data in the DBservers and the agency information in
the cluster are already set up properly. See the launch method for starting a cluster for
the first time. Upgrade

	Kickstarter.upgrade(username,	passwd)	

This performs an upgrade procedure on a cluster as described in the plan which was
given to the constructor. To this end, other dispatchers are contacted as necessary. All
commands for the local dispatcher are executed immediately. The basic approach for the
upgrade is as follows: The agency is started first (exactly as in relaunch), no configuration
is sent there (exactly as in the relaunch action), all servers are first started with the option
"--upgrade" and then normally. In the end, the upgrade-database.js script is run on one of
the coordinators, as in the launch action.

The result is an object that contains information about the started processes, this object
is also stored in the Kickstarter object itself. We do not go into details here about the data
structure, but the most important information are the process IDs of the started
processes. The corresponding shutdown method needs this information to shut down all
processes.

Note that this methods needs that all data in the DBservers and the agency information in
the cluster are already set up properly. See the launch method for starting a cluster for
the first time. Cleanup

	Kickstarter.cleanup()	

This cleans up all the data and logs of a previously shut down cluster. To this end, other
dispatchers are contacted as necessary. Use shutdown first and use with caution, since
potentially a lot of data is being erased with this call!

This module provides functionality for administering the write-ahead logs.

Configuration

	internal.wal.properties()	

Retrieves the configuration of the write-ahead log. The result is a JSON array with the
following attributes:

allowOversizeEntries: whether or not operations that are bigger than a single logfile
can be executed and stored
logfileSize: the size of each write-ahead logfile
historicLogfiles: the maximum number of historic logfiles to keep
reserveLogfiles: the maximum number of reserve logfiles that ArangoDB allocates in
the background
syncInterval: the interval for automatic synchronization of not-yet synchronized write-
ahead log data (in milliseconds)
throttleWait: the maximum wait time that operations will wait before they get aborted
if case of write-throttling (in milliseconds)
throttleWhenPending: the number of unprocessed garbage-collection operations
that, when reached, will activate write-throttling. A value of 0 means that write-
throttling will not be triggered.

Examples

arangosh>	require("internal").wal.properties();

show execution results
	internal.wal.properties(properties)	

Configures the behavior of the write-ahead log. properties must be a JSON JSON object
with the following attributes:

allowOversizeEntries: whether or not operations that are bigger than a single logfile
can be executed and stored
logfileSize: the size of each write-ahead logfile
historicLogfiles: the maximum number of historic logfiles to keep

Write-ahead log

reserveLogfiles: the maximum number of reserve logfiles that ArangoDB allocates in
the background
throttleWait: the maximum wait time that operations will wait before they get aborted
if case of write-throttling (in milliseconds)
throttleWhenPending: the number of unprocessed garbage-collection operations
that, when reached, will activate write-throttling. A value of 0 means that write-
throttling will not be triggered.

Specifying any of the above attributes is optional. Not specified attributes will be ignored
and the configuration for them will not be modified.

Examples

arangosh>	require("internal").wal.properties({	allowOverSizeEntries:	true,	logfileSize:	32	*	1024	*	1024	});

show execution results
Flushing

	internal.wal.flush(waitForSync,	waitForCollector)	

Flushes the write-ahead log. By flushing the currently active write-ahead logfile, the data
in it can be transferred to collection journals and datafiles. This is useful to ensure that all
data for a collection is present in the collection journals and datafiles, for example, when
dumping the data of a collection.

The waitForSync option determines whether or not the operation should block until the
not-yet synchronized data in the write-ahead log was synchronized to disk.

The waitForCollector operation can be used to specify that the operation should block
until the data in the flushed log has been collected by the write-ahead log garbage
collector. Note that setting this option to true might block for a long time if there are long-
running transactions and the write-ahead log garbage collector cannot finish garbage
collection.

Examples

arangosh>	require("internal").wal.flush();

Introduction to Task Management in ArangoDB

ArangoDB can execute user-defined JavaScript functions as one-shot or periodic tasks.
This functionality can be used to implement timed or recurring jobs in the database.

Tasks in ArangoDB consist of a JavaScript snippet or function that is executed when the
task is scheduled. A task can be a one-shot task (meaning it is run once and not
repeated) or a periodic task (meaning that it is re-scheduled after each execution). Tasks
can have optional parameters, which are defined at task setup time. The parameters
specified at task setup time will be passed as arguments to the task whenever it gets
executed. Periodic Tasks have an execution frequency that needs to be specified when
the task is set up. One-shot tasks have a configurable delay after which they'll get
executed.

Tasks will be executed on the server they have been set up on. Tasks will not be shipped
around in a cluster. A task will be executed in the context of the database it was created
in. However, when dropping a database, any tasks that were created in the context of this
database will remain active. It is therefore sensible to first unregister all active tasks for a
database before dropping the database.

Tasks registered in ArangoDB will be executed until the server gets shut down or
restarted. After a restart of the server, any user-defined one-shot or periodic tasks will be
lost.

Commands for Working with Tasks

ArangoDB provides the following commands for working with tasks. All commands can
be accessed via the tasks module, which can be loaded like this:

require("org/arangodb/tasks");

Please note that the tasks module is available inside the ArangoDB server only. It cannot
be used from the ArangoShell or ArangoDB's web interface.

Register a task

Task Management

To register a task, the JavaScript snippet or function needs to be specified in addition to
the execution frequency. Optionally, a task can have an id and a name. If no id is
specified, it will be auto-assigned for a new task. The task id is also the means to access
or unregister a task later. Task names are informational only. They can be used to make
a task distinguishable from other tasks also running on the server.

The following server-side commands register a task. The command to be executed is a
JavaScript string snippet which prints a message to the server's logfile:

var	tasks	=	require("org/arangodb/tasks");

tasks.register({

		id:	"mytask-1",

		name:	"this	is	a	snippet	task",

		period:	15,

		command:	"require('console').log('hello	from	snippet	task');"

});

The above has register a task with id mytask-1, which will be executed every 15 seconds
on the server. The task will write a log message whenever it is invoked.

Tasks can also be set up using a JavaScript callback function like this:

var	tasks	=	require("org/arangodb/tasks");

tasks.register({

		id:	"mytask-2",

		name:	"this	is	a	function	task",

		period:	15,

		command:	function	()	{

				require('console').log('hello	from	function	task');

		}

});

It is important to note that the callback function is late bound and will be executed in a
different context than in the creation context. The callback function must therefore not
access any variables defined outside of its own scope. The callback function can still
define and use its own variables.

To pass parameters to a task, the params attribute can be set when registering a task.
Note that the parameters are limited to datatypes usable in JSON (meaning no callback
functions can be passed as parameters into a task):

var	tasks	=	require("org/arangodb/tasks");

tasks.register({

		id:	"mytask-3",

		name:	"this	is	a	parameter	task",

		period:	15,

		command:	function	(params)	{

				var	greeting	=	params.greeting;

				var	data	=	JSON.stringify(params.data);

				require('console').log('%s	from	parameter	task:	%s',	greeting,	data);

		},

		params:	{	greeting:	"hi",	data:	"how	are	you?"	}

});

Registering a one-shot task works the same way, except that the period attribute must be
omitted. If period is omitted, then the task will be executed just once. The task invocation
delay can optionally be specified with the offset attribute:

var	tasks	=	require("org/arangodb/tasks");

tasks.register({

		id:	"mytask-once",

		name:	"this	is	a	one-shot	task",

		offset:	10,

		command:	function	(params)	{

				require('console').log('you	will	see	me	just	once!');

		}

});

Note that when specifying an offset value of 0, ArangoDB will internally add a very small
value to the offset so will be slightly greater than zero.

Unregister a task

After a task has been registered, it can be unregistered using its id:

var	tasks	=	require("org/arangodb/tasks");

tasks.unregister("mytask-1");

Note that unregistering a non-existing task will throw an exception.

List all tasks

To get an overview of which tasks are registered, there is the get method. If the get
method is called without any arguments, it will return a list of all tasks:

var	tasks	=	require("org/arangodb/tasks");

tasks.get();

If get is called with a task id argument, it will return information about this particular task:

var	tasks	=	require("org/arangodb/tasks");

tasks.get("mytask-3");

The created attribute of a task reveals when a task was created. It is returned as a Unix
timestamp.

jsUnity

The ArangoDB contains a wrapper for jsUnity, a lightweight universal JavaScript unit
testing framework.

Running jsUnity Tests

Assume that you have a test file containing

function	aqlTestSuite	()	{

		return	{

testSizeOfTestCollection	:	function	()	{

		assertEqual(5,	5);

		};

}

jsUnity.run(aqlTestSuite);

return	jsunity.done();

Then you can run the test suite using jsunity.runTest

unix>	ju.runTest("test.js");

2012-01-28T19:10:23Z	[10671]	INFO	Running	aqlTestSuite

2012-01-28T19:10:23Z	[10671]	INFO	1	test	found

2012-01-28T19:10:23Z	[10671]	INFO	[PASSED]	testSizeOfTestCollection

2012-01-28T19:10:23Z	[10671]	INFO	1	test	passed

2012-01-28T19:10:23Z	[10671]	INFO	0	tests	failed

2012-01-28T19:10:23Z	[10671]	INFO	1	millisecond	elapsed

Using jsUnity and node-jscoverage

http://jsunity.com/

Instead of overwriting existing documents, ArangoDB will create a new version of
modified documents. This is even the case when a document gets deleted. The two
benefits are:

Objects can be stored coherently and compactly in the main memory.
Objects are preserved, wo isolated writing and reading transactions allow accessing
these objects for parallel operations.

The system collects obsolete versions as garbage, recognizing them as forsaken.
Garbage collection is asynchronous and runs parallel to other processes.

Database documents are stored in memory-mapped files. Per default, these memory-
mapped files are synced regularly but not instantly. This is often a good tradeoff between
storage performance and durability. If this level of durability is too low for an application,
the server can also sync all modifications to disk instantly. This will give full durability but
will come with a performance penalty as each data modification will trigger a sync I/O
operation.

Durability Configuration

Global Configuration

There are global configuration values for durability, which can be adjusted by specifying
the following configuration options:

	--database.wait-for-sync	boolean	

Default wait-for-sync value. Can be overwritten when creating a new collection.

The default is false. 	--database.force-sync-properties	boolean	

Force syncing of collection properties to disk after creating a collection or updating its

Administrating ArangoDB

AppendOnly/MVCC

Mostly Memory/Durability

properties.

If turned off, no fsync will happen for the collection and database properties stored in
	parameter.json	 files in the file system. Turning off this option will speed up workloads
that create and drop a lot of collections (e.g. test suites).

The default is true. 	--wal.sync-interval	

The interval (in milliseconds) that ArangoDB will use to automatically synchronize data in
its write-ahead logs to disk. Automatic syncs will only be performed for not-yet
synchronized data, and only for operations that have been executed without the
waitForSync attribute. Per-collection configuration

You can also configure the durability behavior on a per-collection basis. Use the
ArangoDB shell to change these properties.

	collection.properties()	

Returns an object containing all collection properties.

waitForSync: If true creating a document will only return after the data was synced to
disk.

journalSize : The size of the journal in bytes.

isVolatile: If true then the collection data will be kept in memory only and ArangoDB
will not write or sync the data to disk.

keyOptions (optional) additional options for key generation. This is a JSON array
containing the following attributes (note: some of the attributes are optional):

type: the type of the key generator used for the collection.
allowUserKeys: if set to true, then it is allowed to supply own key values in the
_key attribute of a document. If set to false, then the key generator will solely be
responsible for generating keys and supplying own key values in the _key
attribute of documents is considered an error.
increment: increment value for autoincrement key generator. Not used for other
key generator types.
offset: initial offset value for autoincrement key generator. Not used for other key
generator types.

In a cluster setup, the result will also contain the following attributes:

numberOfShards: the number of shards of the collection.

shardKeys: contains the names of document attributes that are used to determine
the target shard for documents.

	collection.properties(properties)	

Changes the collection properties. properties must be a object with one or more of the
following attribute(s):

waitForSync: If true creating a document will only return after the data was synced to
disk.

journalSize : The size of the journal in bytes.

Note: it is not possible to change the journal size after the journal or datafile has been
created. Changing this parameter will only effect newly created journals. Also note that
you cannot lower the journal size to less then size of the largest document already stored
in the collection.

Note: some other collection properties, such as type, isVolatile, or keyOptions cannot be
changed once the collection is created.

Examples

Read all properties

arangosh>	db.example.properties();

show execution results
Change a property

arangosh>	db.example.properties({	waitForSync	:	true	});

show execution results
Per-operation configuration

Many data-modification operations and also ArangoDB's transactions allow to specify a
waitForSync attribute, which when set ensures the operation data has been synchronized
to disk when the operation returns.

The amount of disk space used by ArangoDB is determined by a few configuration
options.

Global Configuration

The total amount of disk storage required by ArangoDB is determined by the size of the
write-ahead logfiles plus the sizes of the collection journals and datafiles.

There are the following options for configuring the number and sizes of the write-ahead
logfiles:

	--wal.reserve-logfiles	

The maximum number of reserve logfiles that ArangoDB will create in a background
process. Reserve logfiles are useful in the situation when an operation needs to be
written to a logfile but the reserve space in the logfile is too low for storing the operation.
In this case, a new logfile needs to be created to store the operation. Creating new
logfiles is normally slow, so ArangoDB will try to pre-create logfiles in a background
process so there are always reserve logfiles when the active logfile gets full. The number
of reserve logfiles that ArangoDB keeps in the background is configurable with this
option.

	--wal.historic-logfiles	

The maximum number of historic logfiles that ArangoDB will keep after they have been
garbage-collected. If no replication is used, there is no need to keep historic logfiles
except for having a local changelog.

In a replication setup, the number of historic logfiles affects the amount of data a slave
can fetch from the master's logs. The more historic logfiles, the more historic data is
available for a slave, which is useful if the connection between master and slave is
unstable or slow. Not having enough historic logfiles available might lead to logfile data
being deleted on the master already before a slave has fetched it.

	--wal.logfile-size	

Specifies the filesize (in bytes) for each write-ahead logfile. The logfile size should be
chosen so that each logfile can store a considerable amount of documents. The bigger
the logfile size is chosen, the longer it will take to fill up a single logfile, which also
influences the delay until the data in a logfile will be garbage-collected and written to

Disk-Usage Configuration

collection journals and datafiles. It also affects how long logfile recovery will take at
server start.

	--wal.allow-oversize-entries	

Whether or not it is allowed to store individual documents that are bigger than would fit
into a single logfile. Setting the option to false will make such operations fail with an error.
Setting the option to true will make such operations succeed, but with a high potential
performance impact. The reason is that for each oversize operation, an individual
oversize logfile needs to be created which may also block other operations. The option
should be set to false if it is certain that documents will always have a size smaller than a
single logfile.

	--wal.suppress-shape-information	

Setting this variable to true will lead to no shape information being written into the write-
ahead logfiles for documents or edges. While this is a good optimization for a single
server to save memory (and disk space), it it will effectively disable using the write-ahead
log as a reliable source for replicating changes to other servers. A master server with this
option set to true will not be able to fully reproduce the structure of saved documents
after a collection has been deleted. In case a replication client requests a document for
which the collection is already deleted, the master will return an empty document. Note
that this only affects replication and not normal operation on the master.

Do not set this variable to true on a server that you plan to use as a replication
master When data gets copied from the write-ahead logfiles into the journals or datafiles
of collections, files will be created on the collection level. How big these files are is
determined by the following global configuration value:

	--database.maximal-journal-size	size	

Maximal size of journal in bytes. Can be overwritten when creating a new collection. Note
that this also limits the maximal size of a single document.

The default is 32MB. Per-collection configuration

The journal size can also be adjusted on a per-collection level using the collection's
properties method.

Indexes, Identifiers, Handles

This is an introduction to ArangoDB's interface for indexes in general.
There are special sections for

cap constraints
geo-spatial indexes
hash indexes
skip-lists

Index

Indexes are used to allow fast access to documents. For each collection there is always
the primary index which is a hash index for the document key (_key attribute). This index
cannot be dropped or changed. Edge collections will also have an automatically created
edges index, which cannot be modified. This index provides quick access to documents
via the _from and _to attributes.

Most user-land indexes can be created by defining the names of the attributes which
should be indexed. Some index types allow indexing just one attribute (e.g. fulltext index)
whereas other index types allow indexing multiple attributes.

Indexing system attributes such as _id, _key, _from, and _to in user-defined indexes is
not supported by any index type. Manually creating an index that relies on any of these
attributes is unsupported.

Index Handle An index handle uniquely identifies an index in the database. It is a string
and consists of a collection name and an index identifier separated by /.

Geo Index

A geo index is used to find places on the surface of the earth fast.

Hash Index

A hash index is used to find documents based on examples. A hash index can be created
for one or multiple document attributes. A hash index will only be used by queries if all
indexed attributes are present in the example or search query, and if all attributes are

Handling Indexes

compared using the equality (== operator). That means the hash index does not support
range queries.

If the index is declared unique, then access to the indexed attributes should be fast. The
performance degrades if the indexed attribute(s) contain(s) only very few distinct values.

Edges Index

An edges index is automatically created for edge collections. It contains connections
between vertex documents and is invoked when the connecting edges of a vertex are
queried. There is no way to explicitly create or delete edge indexes.

Skiplist Index

A skiplist is used to find ranges of documents.

Fulltext Index

A fulltext index can be used to find words, or prefixes of words inside documents. A
fulltext index can be set on one attribute only, and will index all words contained in
documents that have a textual value in this attribute. Only words with a (specifyable)
minimum length are indexed. Word tokenisation is done using the word boundary
analysis provided by libicu, which is taking into account the selected language provided
at server start. Words are indexed in their lower-cased form. The index supports
complete match queries (full words) and prefix queries.

All indexes in ArangoDB have an index handle. This handle uniquely defines an index
and is managed by ArangoDB. The interface allows you to access the indexes of a
collection as:

db.collection.index(index-handle)

For example: Assume that the index handle, which is stored in the _id attribute of the
index, is demo/362549736 and the index lives in a collection named demo, then that
index can be accessed as:

db.demo.index("demo/362549736")

Address and ETag of an Index

Because the index handle is unique within the database, you can leave out the collection
and use the shortcut:

db._index("demo/362549736")

ArangoDB automatically indexes the _key attribute in each collection. There is no need to
index this attribute separately. Please note that a document's _id attribute is derived from
the _key attribute, and is thus implicitly indexed, too.

ArangoDB will also automatically create an index on _from and _to in any edge
collection, meaning incoming and outgoing connections can be determined efficiently.

Users can define additional indexes on one or multiple document attributes. Several
different index types are provided by ArangoDB. These indexes have different usage
scenarios:

hash index: provides quick access to individual documents if (and only if) all indexed
attributes are provided in the search query. The index will only be used for equality
comparisons. It does not support range queries.

The hash index is a good candidate if all or most queries on the indexed attribute(s)
are equality comparisons, and if the attribute selectivity is high. That means the
number of distinct attribute values in relation to the total number of documents
should be high. This is the case for indexes declared unique.

The hash index should not be used if duplicate index values are allowed (i.e. if the
hash index is not declared unique) and it cannot be avoided that there will be many
duplicate index values. For example, it should be avoided to use a hash index on an
attribute with just 10 distinct values in a collection with a million documents.

skip list index: skip lists keep the indexed values in an order, so they can be used for
equality and range queries. Skip list indexes will have a slightly higher overhead than
hash indexes in case but they are more general and allow more use cases (e.g.
range queries). Additionally, they can be used for lower selectivity attributes, when
non-unique hash indexes are not a good fit.

Which Index type to use when

geo index: the geo index provided by ArangoDB allows searching for documents
within a radius around a two-dimensional earth coordinate (point), or to find
documents with are closest to a point. Document coordinates can either be specified
in two different document attributes or in a single attribute, e.g.

{	"latitude":	50.9406645,	"longitude":	6.9599115	}

or

{	"coords":	[50.9406645,	6.9599115]	}

fulltext index: a fulltext index can be used to index all words contained in a specific
attribute of all documents in a collection. Only words with a (specifiable) minimum
length are indexed. Word tokenization is done using the word boundary analysis
provided by libicu, which is taking into account the selected language provided at
server start.

The index supports complete match queries (full words) and prefix queries.

cap constraint: the cap constraint provided by ArangoDB indexes documents not to
speed up search queries, but to limit (cap) the number or size of documents in a
collection.

Currently it is not possible to index system attributes in user-defined indexes.

Collection Methods

List of Index

	getIndexes()	

Returns a list of all indexes defined for the collection.

Examples

[

		{	

Working with Indexes

				"id"	:	"demo/0",	

				"type"	:	"primary",

				"fields"	:	["_id"]

		},	

		{	

				"id"	:	"demo/2290971",	

				"unique"	:	true,	

				"type"	:	"hash",	

				"fields"	:	["a"]	

		},	

		{	

				"id"	:	"demo/2946331",

				"unique"	:	false,	

				"type"	:	"hash",	

				"fields"	:	["b"]	

		},

		{	

				"id"	:	"demo/3077403",	

				"unique"	:	false,	

				"type"	:	"skiplist",	

				"fields"	:	["c"]

		}

]

Drop index

	collection.dropIndex(index)	

Drops the index. If the index does not exist, then false is returned. If the index existed
and was dropped, then true is returned. Note that you cannot drop some special indexes
(e.g. the primary index of a collection or the edge index of an edge collection).

	collection.dropIndex(index-handle)	

Same as above. Instead of an index an index handle can be given.

Examples

arango>	db.example.ensureSkiplist("a",	"b");

{	"id"	:	"example/991154",	"unique"	:	false,	"type"	:	"skiplist",	"fields"	:	["a",	"b"

arango>	i	=	db.example.getIndexes();

[

		{	"id"	:	"example/0",	"type"	:	"primary",	"fields"	:	["_id"]	},

		{	"id"	:	"example/991154",	"unique"	:	false,	"type"	:	"skiplist",	"fields"	:	["a",	"b"

]

arango>	db.example.dropIndex(i[0])

false

arango>	db.example.dropIndex(i[1].id)

true

arango>	i	=	db.example.getIndexes();

[{	"id"	:	"example/0",	"type"	:	"primary",	"fields"	:	["_id"]	}]

Existing index

	collection.ensureIndex(index-description)	

Ensures that an index according to the index-description exists. A new index will be
created if none exists with the given description.

The index-description must contain at least a type attribute. type can be one of the
following values:

hash: hash index
skiplist: skiplist index
fulltext: fulltext index
geo1: geo index, with one attribute
geo2: geo index, with two attributes
cap: cap constraint

Other attributes may be necessary, depending on the index type.

Calling this method returns an index object. Whether or not the index object existed
before the call is indicated in the return attribute isNewlyCreated.

Examples

arango>	db.example.ensureIndex({	type:	"hash",	fields:	["name"],	unique:	true	});

{

		"id"	:	"example/30242599562",

		"type"	:	"hash",

		"unique"	:	true,

		"fields"	:	[

				"name"

],

		"isNewlyCreated"	:	true

}

Index handle

	db._index(index-handle)	

Returns the index with index-handle or null if no such index exists.

Examples

arango>	db.example.getIndexes().map(function(x)	{	return	x.id;	});

["example/0"]

arango>	db._index("example/0");

{	"id"	:	"example/0",	"type"	:	"primary",	"fields"	:	["_id"]	}

Drop index

	db._dropIndex(index)	

Drops the index. If the index does not exist, then false is returned. If the index existed
and was dropped, then true is returned. Note that you cannot drop the primary index.

	db._dropIndex(index-handle)	

Drops the index with index-handle.

Examples

arango>	db.example.ensureSkiplist("a",	"b");

{	"id"	:	"example/1577138",	"unique"	:	false,	"type"	:	"skiplist",	"fields"	:	["a",	"b"

arango>	i	=	db.example.getIndexes();

[{	"id"	:	"example/0",	"type"	:	"primary",	"fields"	:	["_id"]	},

	{	"id"	:	"example/1577138",	"unique"	:	false,	"type"	:	"skiplist",	"fields"	:	["a",	"b"

	arango>	db._dropIndex(i[0]);

	false

	arango>	db._dropIndex(i[1].id);

true

arango>	i	=	db.example.getIndexes();

[{	"id"	:	"example/0",	"type"	:	"primary",	"fields"	:	["_id"]	}]

Database Methods

Introduction to Cap Constraints

This is an introduction to ArangoDB's size restrictions aka cap constraints for collections.

It is possible to restrict the size of collections. If you add a document and the size
exceeds the limit, then the least recently created or updated document(s) will be dropped.
The size of a collection is measured in the number of active documents a collection
contains, and optionally in the total size of the active documents' data in bytes.

It is possible to only restrict the number of documents in a collection, or to only restrict the
total active data size, or both at the same time. If there are restrictions on both document
count and total size, then the first violated constraint will trigger the auto-deletion of "too"
old documents until all constraints are satisfied.

Using a cap constraint, a collection can be used as a FIFO container, with just the newest
documents remaining in the collection.

For example, a cap constraint can be used to keep a list of just the most recent log
entries, and at the same time ensure that the collection does not grow indefinitely. Cap
constraints can be used to automate the process of getting rid of "old" documents, and so
save the user from implementing own jobs to purge "old" collection data.

	collection.ensureCapConstraint(size,	{byteSize})	

Creates a size restriction aka cap for the collection of size documents and/or byteSize
data size. If the restriction is in place and the (size plus one) document is added to the
collection, or the total active data size in the collection exceeds byteSize, then the least
recently created or updated documents are removed until all constraints are satisfied.

It is allowed to specify either size or byteSize, or both at the same time. If both are
specified, then the automatic document removal will be triggered by the first non-met
constraint.

Note that at most one cap constraint is allowed per collection. Trying to create additional
cap constraints will result in an error. Creating cap constraints is also not supported in

Cap Constraint

Accessing Cap Constraints from the Shell

sharded collections with more than one shard.

Note that this does not imply any restriction of the number of revisions of documents.

Examples

Restrict the number of document to at most 10 documents:

arango>	db.examples.ensureCapConstraint(10);

{	"id"	:	"examples/934311",	"type"	:	"cap",	"size"	:	10,	"byteSize"	:	0,	"isNewlyCreated"	:	true	}

arango>	for	(var	i	=	0;		i	<	20;		++i)	{	var	d	=	db.examples.save({	n	:	i	});	}

arango>	db.examples.count();

10

Introduction to Geo Indexes

This is an introduction to ArangoDB's geo indexes.

ArangoDB uses Hilbert curves to implement geo-spatial indexes. See this blog for details.

A geo-spatial index assumes that the latitude is between -90 and 90 degree and the
longitude is between -180 and 180 degree. A geo index will ignore all documents which
do not fulfill these requirements.

A geo-spatial constraint makes the same assumptions, but documents not fulfilling these
requirements are rejected.

	collection.ensureGeoIndex(location)	

Creates a geo-spatial index on all documents using location as path to the coordinates.
The value of the attribute must be a list with at least two double values. The list must
contain the latitude (first value) and the longitude (second value). All documents, which
do not have the attribute path or with value that are not suitable, are ignored.

In case that the index was successfully created, the index identifier is returned.

	collection.ensureGeoIndex(location,	true)	

As above which the exception, that the order within the list is longitude followed by
latitude. This corresponds to the format described in

http://geojson.org/geojson-spec.html

	collection.ensureGeoIndex(latitude,	longitude)	

Creates a geo-spatial index on all documents using latitude and longitude as paths the
latitude and the longitude. The value of the attribute latitude and of the attribute longitude
must a double. All documents, which do not have the attribute paths or which values are
not suitable, are ignored.

Geo Indexes

Accessing Geo Indexes from the Shell

http://www.arangodb.org/2012/03/31/using-hilbert-curves-and-polyhedrons-for-geo-indexing
http://geojson.org/geojson-spec.html

In case that the index was successfully created, the index identifier is returned.

Examples

Create an geo index for a list attribute:

arango>	db.geo.ensureGeoIndex("loc");

{	"id"	:	"geo/47772301",	"type"	:	"geo1",	"geoJson"	:	false,	"fields"	:	["loc"],	"isNewlyCreated"	:	true	}

arango>	for	(i	=	-90;		i	<=	90;		i	+=	10)	{

.......>			for	(j	=	-180;	j	<=	180;	j	+=	10)	{

.......>					db.geo.save({	name	:	"Name/"	+	i	+	"/"	+	j,

.......>																			loc:	[i,	j]	});

.......>			}

.......>	}

arango>	db.geo.count();

703

arango>	db.geo.near(0,0).limit(3).toArray();

[{	"_id"	:	"geo/24861164",	"_key"	:	"24861164",	"_rev"	:	"24861164",	"name"	:	"Name/0/0",	"loc"	:	[0,	0]},

		{	"_id"	:	"geo/24926700",	"_key"	:	"24926700",	"_rev"	:	"24926700",	"name"	:	"Name/0/10",	"loc"	:	[0,	10]},

		{	"_id"	:	"geo/22436332",	"_key"	:	"22436332",	"_rev"	:	"22436332",	"name"	:	"Name/-10/0",	"loc"	:	[-10,	0]}]

arango>	db.geo.near(0,0).count();

100

Create an geo index for a hash array attribute:

arango>	db.geo2.ensureGeoIndex("location.latitude",	"location.longitude");

{	"id"	:	"geo2/1070652",	"type"	:	"geo2",	"fields"	:	["location.latitude",	"location.longitude"],	"isNewlyCreated"	:	true	}

arango>	for	(i	=	-90;		i	<=	90;		i	+=	10)	{

.......>			for	(j	=	-180;	j	<=	180;	j	+=	10)	{

.......>					db.geo2.save({	name	:	"Name/"	+	i	+	"/"	+	j,

.......>																				location:	{	latitude	:	i,

.......>																																longitude	:	j	}	});

.......>			}

.......>	}

arango>	db.geo2.near(0,0).limit(3).toArray();

[

		{

				"_id"	:	"geo2/72964588",

				"_key"	:	"72964588",

				"_rev"	:	"72964588",	

				"location"	:	{	"latitude"	:	0,	"longitude"	:	0	},	

				"name"	:	"Name/0/0"

		},

		{

				"_id"	:	"geo2/73030124",

				"_key"	:	"73030124",

				"_rev"	:	"73030124",	

				"location"	:	{	"latitude"	:	0,	"longitude"	:	10	},	

				"name"	:	"Name/0/10"

		},

		{

				"_id"	:	"geo2/70539756",

				"_key"	:	"70539756",

				"_rev"	:	"70539756",

				"location"	:	{	"latitude"	:	-10,	"longitude"	:	0	},

				"name"	:	"Name/-10/0"

		}

]

	collection.ensureGeoConstraint(location,	ignore-null)	

	collection.ensureGeoConstraint(location,	true,	ignore-null)	

	collection.ensureGeoConstraint(latitude,	longitude,	ignore-null)	

Works like ensureGeoIndex but requires that the documents contain a valid geo
definition. If ignore-null is true, then documents with a null in location or at least one null
in latitude or longitude are ignored.

	collection.geo(location-attribute)	

Looks up a geo index defined on attribute location-attribute.

Returns a geo index object if an index was found. The near or within operators can then
be used to execute a geo-spatial query on this particular index.

This is useful for collections with multiple defined geo indexes.

	collection.geo(location-attribute,	true)	

Looks up a geo index on a compound attribute location-attribute.

Returns a geo index object if an index was found. The near or within operators can then
be used to execute a geo-spatial query on this particular index.

	collection.geo(latitude-attribute,	longitude-attribute)	

Looks up a geo index defined on the two attributes latitude-attribute and longitude-
attribute.

Returns a geo index object if an index was found. The near or within operators can then

be used to execute a geo-spatial query on this particular index.

Examples

Assume you have a location stored as list in the attribute home and a destination stored
in the attribute work. Then you can use the geo operator to select which geo-spatial
attributes (and thus which index) to use in a near query.

arango>	for	(i	=	-90;		i	<=	90;		i	+=	10)	{

.......>			for	(j	=	-180;		j	<=	180;		j	+=	10)	{

.......>					db.complex.save({	name	:	"Name/"	+	i	+	"/"	+	j,	

.......>																							home	:	[i,	j],	

.......>																							work	:	[-i,	-j]	});

.......>			}

.......>	}

arango>	db.complex.near(0,	170).limit(5);

exception	in	file	'/simple-query'	at	1018,5:	a	geo-index	must	be	known

arango>	db.complex.ensureGeoIndex(""home"");

arango>	db.complex.near(0,	170).limit(5).toArray();

[{	"_id"	:	"complex/74655276",	"_key"	:	"74655276",	"_rev"	:	"74655276",	"name"	:	"Name/0/170",	"home"	:	[0,	170],	"work"	:	[0,	-170]	},

		{	"_id"	:	"complex/74720812",	"_key"	:	"74720812",	"_rev"	:	"74720812",	"name"	:	"Name/0/180",	"home"	:	[0,	180],	"work"	:	[0,	-180]	},	

		{	"_id"	:	"complex/77080108",	"_key"	:	"77080108",	"_rev"	:	"77080108",	"name"	:	"Name/10/170",	"home"	:	[10,	170],	"work"	:	[-10,	-170]	},

		{	"_id"	:	"complex/72230444",	"_key"	:	"72230444",	"_rev"	:	"72230444",	"name"	:	"Name/-10/170",	"home"	:	[-10,	170],	"work"	:	[10,	-170]	},

		{	"_id"	:	"complex/72361516",	"_key"	:	"72361516",	"_rev"	:	"72361516",	"name"	:	"Name/0/-180",	"home"	:	[0,	-180],	"work"	:	[0,	180]	}]						

arango>	db.complex.geo("work").near(0,	170).limit(5);

exception	in	file	'/simple-query'	at	1018,5:	a	geo-index	must	be	known

arango>	db.complex.ensureGeoIndex("work");

arango>	db.complex.geo("work").near(0,	170).limit(5).toArray();

[{	"_id"	:	"complex/72427052",	"_key"	:	"72427052",	"_rev"	:	"72427052",	"name"	:	"Name/0/-170",	"home"	:	[0,	-170],	"work"	:	[0,	170]	},	

		{	"_id"	:	"complex/72361516",	"_key"	:	"72361516",	"_rev"	:	"72361516",	"name"	:	"Name/0/-180",	"home"	:	[0,	-180],	"work"	:	[0,	180]	},	

		{	"_id"	:	"complex/70002220",	"_key"	:	"70002220",	"_rev"	:	"70002220",	"name"	:	"Name/-10/-170",	"home"	:	[-10,	-170],	"work"	:	[10,	170]	},	

		{	"_id"	:	"complex/74851884",	"_key"	:	"74851884",	"_rev"	:	"74851884",	"name"	:	"Name/10/-170",	"home"	:	[10,	-170],	"work"	:	[-10,	170]	},	

		{	"_id"	:	"complex/74720812",	"_key"	:	"74720812",	"_rev"	:	"74720812",	"name"	:	"Name/0/180",	"home"	:	[0,	180],	"work"	:	[0,	-180]	}]

	collection.near(latitude,	longitude)	

The returned list is sorted according to the distance, with the nearest document to the
coordinate (latitude, longitude) coming first. If there are near documents of equal
distance, documents are chosen randomly from this set until the limit is reached. It is
possible to change the limit using the limit operator.

In order to use the near operator, a geo index must be defined for the collection. This
index also defines which attribute holds the coordinates for the document. If you have
more then one geo-spatial index, you can use the geo operator to select a particular

index.

Note near does not support negative skips. However, you can still use limit followed to
skip.

	collection.near(latitude,	longitude).limit(limit)	

Limits the result to limit documents instead of the default 100.

	Note	

Unlike with multiple explicit limits, limit will raise the implicit default limit imposed by
within. collection.near(latitude, longitude).distance() This will add an attribute distance to
all documents returned, which contains the distance between the given point and the
document in meter.

	collection.near(latitude,	longitude).distance(name)	

This will add an attribute name to all documents returned, which contains the distance
between the given point and the document in meter.

Examples

To get the nearst two locations:

arango>	db.geo.near(0,0).limit(2).toArray();

[{	"_id"	:	"geo/24773376",	"_key"	:	"24773376",	"_rev"	:	"24773376",	"name"	:	"Name/0/0",	"loc"	:	[0,	0]	},	

		{	"_id"	:	"geo/22348544",	"_key"	:	"22348544",	"_rev"	:	"22348544",	"name"	:	"Name/-10/0",	"loc"	:	[-10,	0]	}]

If you need the distance as well, then you can use the distance operator:

arango>	db.geo.near(0,0).distance().limit(2).toArray();

[

		{	"_id"	:	geo/24773376",	"_key"	:	"24773376",	"_rev"	:	"24773376",	"distance"	:	0,	"name"	:	"Name/0/0",	"loc"	:	[0,	0]	},

		{	"_id"	:	geo/22348544",	"_key"	:	"22348544",	"_rev"	:	"22348544",	"distance"	:	1111949.3,	"name"	:	"Name/-10/0",	"loc"	:	[-10,	0]	}	

]

	collection.within(latitude,	longitude,	radius)	

This will find all documents within a given radius around the coordinate (latitude,
longitude). The returned list is sorted by distance, beginning with the nearest document.

In order to use the within operator, a geo index must be defined for the collection. This
index also defines which attribute holds the coordinates for the document. If you have
more then one geo-spatial index, you can use the geo operator to select a particular
index.

	collection.within(latitude,	longitude,	radius).distance()	

This will add an attribute _distance to all documents returned, which contains the
distance between the given point and the document in meter.

	collection.within(latitude,	longitude,	radius).distance(name)	

This will add an attribute name to all documents returned, which contains the distance
between the given point and the document in meter.

Examples

To find all documents within a radius of 2000 km use:

arango>	db.geo.within(0,	0,	2000	*	1000).distance().toArray();

[{	"_id"	:	"geo/24773376",	"_key"	:	"24773376",	"_rev"	:	"24773376",	"distance"	:	0,	"name"	:	"Name/0/0",	"loc"	:	[0,	0]	},	

		{	"_id"	:	"geo/24707840",	"_key"	:	"24707840",	"_rev"	:	"24707840",	"distance"	:	1111949.3,	"name"	:	"Name/0/-10",	"loc"	:	[0,	-10]	},

		{	"_id"	:	"geo/24838912",	"_key"	:	"24838912",	"_rev"	:	"24838912",	"distance"	:	1111949.3,	"name"	:	"Name/0/10",	"loc"	:	[0,	10]	},

		{	"_id"	:	"geo/22348544",	"_key"	:	"22348544",	"_rev"	:	"22348544",	"distance"	:	1111949.3,	"name"	:	"Name/-10/0",	"loc"	:	[-10,	0]	},

		{	"_id"	:	"geo/27198208",	"_key"	:	"27198208",	"_rev"	:	"27198208",	"distance"	:	1111949.3,	"name"	:	"Name/10/0",	"loc"	:	[10,	0]	},

		{	"_id"	:	"geo/22414080",	"_key"	:	"22414080",	"_rev"	:	"22414080",	"distance"	:	1568520.6,	"name"	:	"Name/-10/10",	"loc"	:	[-10,	10]	},

		{	"_id"	:	"geo/27263744",	"_key"	:	"27263744",	"_rev"	:	"27263744",	"distance"	:	1568520.6,	"name"	:	"Name/10/10",	"loc"	:	[10,	10]	},

		{	"_id"	:	"geo/22283008",	"_key"	:	"22283008",	"_rev"	:	"22283008",	"distance"	:	1568520.6,	"name"	:	"Name/-10/-10",	"loc"	:	[-10,	-10]	},

		{	"_id"	:	"geo/27132672",	"_key"	:	"27132672",	"_rev"	:	"27132672",	"distance"	:	1568520.6,	"name"	:	"Name/10/-10",	"loc"	:	[10,	-10]	}]

Introduction to Fulltext Indexes

This is an introduction to ArangoDB's fulltext indexes.

It is possible to define a fulltext index on one textual attribute of a collection of
documents. The fulltext index can then be used to efficiently find exact words or prefixes
of words contained in these documents.

	ensureFulltextIndex(field,	minWordLength)	

Creates a fulltext index on all documents on attribute field. All documents, which do not
have the attribute field or that have a non-textual value inside their field attribute are
ignored.

The minimum length of words that are indexed can be specified with the minWordLength
parameter. Words shorter than minWordLength characters will not be indexed.
minWordLength has a default value of 2, but this value might be changed in future
versions of ArangoDB. It is thus recommended to explicitly specify this value

In case that the index was successfully created, the index identifier is returned.

arangod>	db.emails.ensureFulltextIndex("body");

{	"id"	:	"emails/42725508",	"unique"	:	false,	"type"	:	"fulltext",	"fields"	:	["body"],	"isNewlyCreated"	:	true	}

Fulltext indexes

Accessing Fulltext Indexes from the Shell

Introduction to Hash Indexes

This is an introduction to ArangoDB's hash indexes.

It is possible to define a hash index on one or more attributes (or paths) of a document.
This hash index is then used in queries to locate documents in O(1) operations. If the
hash is unique, then no two documents are allowed to have the same set of attribute
values.

	ensureUniqueConstraint(field1,	field2,	...,	fieldn)	

Creates a unique hash index on all documents using field1, field2, ... as attribute paths.
At least one attribute path must be given.

When a unique constraint is in effect for a collection, then all documents which contain
the given attributes must differ in the attribute values. Creating a new document or
updating a document will fail, if the uniqueness is violated. If any attribute value is null for
a document, this document is ignored by the index.

Note that non-existing attribute paths in a document are treated as if the value were null.

In case that the index was successfully created, the index identifier is returned.

Examples

arango>	db.four.ensureUniqueConstraint("a",	"b.c");

{	"id"	:	"four/1147445",	"unique"	:	true,	"type"	:	"hash",	"fields"	:	["a",	"b.c"],	"isNewlyCreated"	:	true	}

arango>	db.four.save({	a	:	1,	b	:	{	c	:	1	}	});

{	"_id"	:	"four/1868341",	"_key"	:	"1868341",	"_rev"	:	"1868341"	}

arango>	db.four.save({	a	:	1,	b	:	{	c	:	1	}	});

JavaScript	exception	in	file	'(arango)'	at	1,9:	[ArangoError	1210:	cannot	save	document]

!db.four.save({	a	:	1,	b	:	{	c	:	1	}	});

!								^

stacktrace:	[ArangoError	1210:	cannot	save	document]

at	(arango):1:9

Hash Indexes

Accessing Hash Indexes from the Shell

arango>	db.four.save({	a	:	1,	b	:	{	c	:	null	}	});

{	"_id"	:	"four/2196021",	"_key"	:	"2196021",	"_rev"	:	"2196021"	}

arango>	db.four.save({	a	:	1	});

{	"_id"	:	"four/2196023",	"_key"	:	"2196023",	"_rev"	:	"2196023"	}

	ensureHashIndex(field1,	field2,	...,	fieldn)	

Creates a non-unique hash index on all documents using field1, field2, ... as attribute
paths. At least one attribute path must be given.

Note that non-existing attribute paths in a document are treated as if the value were null.

In case that the index was successfully created, the index identifier is returned.

Examples

arango>	db.test.ensureHashIndex("a");

{	"id"	:	"test/5922391",	"unique"	:	false,	"type"	:	"hash",	"fields"	:	["a"],	"isNewlyCreated"	:	true	}

arango>	db.test.save({	a	:	1	});

{	"_id"	:	"test/6381143",	"_key"	:	"6381143",	"_rev"	:	"6381143"	}

arango>	db.test.save({	a	:	1	});

{	"_id"	:	"test/6446679",	"_key"	:	"6446679",	"_rev"	:	"6446679"	}

arango>	db.test.save({	a	:	null	});

{	"_id"	:	"test/6708823",	"_key"	:	"6708823",	"_rev"	:	"6708823"	}

This is an introduction to ArangoDB's skip-lists.

It is possible to define a skip-list index on one or more attributes (or paths) of a
documents. This skip-list is then used in queries to locate documents within a given
range. If the skip-list is unique, then no two documents are allowed to have the same set
of attribute values.

	ensureUniqueSkiplist(field1,	field2,	...,	fieldn)	

Creates a skiplist index on all documents using attributes as paths to the fields. At least
one attribute must be given. All documents, which do not have the attribute path or with
one or more values that are not suitable, are ignored.

In case that the index was successfully created, the index identifier is returned.

arangod>	db.ids.ensureUniqueSkiplist("myId");

{	"id"	:	"ids/42612360",	"unique"	:	true,	"type"	:	"skiplist",	"fields"	:	["myId"],	"isNewlyCreated"	:	true	}

arangod>	db.ids.save({	"myId":	123	});

{	"_id"	:	"ids/42743432",	"_key"	:	"42743432",	"_rev"	:	"42743432"	}

arangod>	db.ids.save({	"myId":	456	});

{	"_id"	:	"ids/42808968",	"_key"	:	"42808968",	"_rev"	:	"42808968"	}

arangod>	db.ids.save({	"myId":	789	});

{	"_id"	:	"ids/42874504",	"_key"	:	"42874504",	"_rev"	:	"42874504"	}	

arangod>	db.ids.save({	"myId":	123	});

JavaScript	exception	in	file	'(arango)'	at	1,8:	[ArangoError	1210:	cannot	save	document:	unique	constraint	violated]

!db.ids.save({	"myId":	123	});

!							^

stacktrace:	[ArangoError	1210:	cannot	save	document:	unique	constraint	violated]

at	(arango):1:8

arangod>	db.ids.ensureUniqueSkiplist("name.first",	"name.last");

{	"id"	:	"ids/43362549",	"unique"	:	true,	"type"	:	"skiplist",	"fields"	:	["name.first",	"name.last"],	"isNewlyCreated"	:	true	}

arangod>	db.ids.save({	"name"	:	{	"first"	:	"hans",	"last":	"hansen"	}});

{	"_id"	:	"ids/43755765",	"_rev"	:	"43755765",	"_key"	:	"43755765"	}

Skip-Lists

Introduction to Skiplist Indexes

Accessing Skip-List Indexes from the Shell

arangod>	db.ids.save({	"name"	:	{	"first"	:	"jens",	"last":	"jensen"	}});

{	"_id"	:	"ids/43821301",	"_rev"	:	"43821301",	"_key"	:	"43821301"	}

arangod>	db.ids.save({	"name"	:	{	"first"	:	"hans",	"last":	"jensen"	}});

{	"_id"	:	"ids/43886837",	"_rev"	:	"43886837",	"_key"	:	"43886837"	}

arangod>	db.ids.save({	"name"	:	{	"first"	:	"hans",	"last":	"hansen"	}});

JavaScript	exception	in	file	'(arango)'	at	1,8:	[ArangoError	1210:	cannot	save	document:	unique	constraint	violated]

!db.ids.save({"name"	:	{"first"	:	"hans",	"last":	"hansen"	}});

!							^

stacktrace:	[ArangoError	1210:	cannot	save	document:	unique	constraint	violated]

at	(arango):1:8

	ensureSkiplist(field1,	field2,	...,	fieldn)	

Creates a multi skiplist index on all documents using attributes as paths to the fields. At
least one attribute must be given. All documents, which do not have the attribute path or
with one or more values that are not suitable, are ignored.

In case that the index was successfully created, the index identifier is returned.

arangod>	db.names.ensureSkiplist("first");

{	"id"	:	"names/42725508",	"unique"	:	false,	"type"	:	"skiplist",	"fields"	:	["first"],	"isNewlyCreated"	:	true	}

arangod>	db.names.save({	"first"	:	"Tim"	});

{	"_id"	:	"names/42856580",	"_key"	:	"42856580",	"_rev"	:	"42856580"	}

arangod>	db.names.save({	"first"	:	"Tom"	});

{	"_id"	:	"names/42922116",	"_key"	:	"42922116",	"_rev"	:	"42922116"	}

arangod>	db.names.save({	"first"	:	"John"	});

{	"_id"	:	"names/42987652",	"_key"	:	"42987652",	"_rev"	:	"42987652"	}

arangod>	db.names.save({	"first"	:	"Tim"	});

{	"_id"	:	"names/43053188",	"_key"	:	"43053188",	"_rev"	:	"43053188"	}

arangod>	db.names.save({	"first"	:	"Tom"	});

{	"_id"	:	"names/43118724",	"_key"	:	"43118724",	"_rev"	:	"43118724"	}

Introduction to Bit-Array Indexes

It is possible to define a bit-array index on one or more attributes (or paths) of a
documents.

Accessing BitArray Indexes from the Shell

	collection.ensureBitarray(field*1*,	value*1*,	...,	field*n*,	value*n*)	

Creates a bitarray index on documents using attributes as paths to the fields (field1,...,
fieldn}). A value (value1,...,valuen) consists of an array of possible values that the field
can take. At least one field and one set of possible values must be given.

All documents, which do not have all of the attribute paths are ignored (that is, are not
part of the bitarray index, they are however stored within the collection). A document
which contains all of the attribute paths yet has one or more values which are not part of
the defined range of values will be rejected and the document will not inserted within the
collection. Note that, if a bitarray index is created subsequent to any documents inserted
in the given collection, then the creation of the index will fail if one or more documents are
rejected (due to attribute values being outside the designated range).

In case that the index was successfully created, the index identifier is returned.

In the example below we create a bitarray index with one field and that field can have the
values of either 0 or 1. Any document which has the attribute x defined and does not
have a value of 0 or 1 will be rejected and therefore not inserted within the collection.
Documents without the attribute x defined will not take part in the index.

arango>	arangod>	db.example.ensureBitarray("x",	[0,1]);

{

"id"	:	"2755894/3607862",

"unique"	:	false,

"type"	:	"bitarray",

"fields"	:	[["x",	[0,	1]]],

"undefined"	:	false,

"isNewlyCreated"	:	true

}

In the example below we create a bitarray index with one field and that field can have the

BitArray Indexes

values of either 0, 1 or other (indicated by []). Any document which has the attribute x
defined will take part in the index. Documents without the attribute x defined will not take
part in the index.

arangod>	db.example.ensureBitarray("x",	[0,1,[]]);

{

"id"	:	"2755894/4263222",

"unique"	:	false,

"type"	:	"bitarray",

"fields"	:	[["x",	[0,	1,	[]]]],

"undefined"	:	false,

"isNewlyCreated"	:	true

}

In the example below we create a bitarray index with two fields. Field x can have the
values of either 0 or 1; while field y can have the values of 2 or "a". A document which
does not have both attributes x and y will not take part within the index. A document
which does have both attributes x and y defined must have the values 0 or 1 for attribute
x and 2 or 1 for attribute y, otherwise the document will not be inserted within the
collection.

arangod>	db.example.ensureBitarray("x",	[0,1],	"y",	[2,"a"]);

{

"id"	:	"2755894/5246262",

"unique"	:	false,

"type"	:	"bitarray",

"fields"	:	[["x",	[0,	1]],	["y",	[0,	1]]],

"undefined"	:	false,

"isNewlyCreated"	:	false

}

In the example below we create a bitarray index with two fields. Field x can have the
values of either 0 or 1; while field y can have the values of 2, "a" or other . A document
which does not have both attributes x and y will not take part within the index. A
document which does have both attributes x and y defined must have the values 0 or 1
for attribute x and any value for attribute y will be acceptable, otherwise the document will
not be inserted within the collection.

arangod>	db.example.ensureBitarray("x",	[0,1],	"y",	[2,"a",[]]);

{

"id"	:	"2755894/5770550",

"unique"	:	false,

"type"	:	"bitarray",

"fields"	:	[["x",	[0,	1]],	["y",	[2,	"a",	[]]]],

"undefined"	:	false,

"isNewlyCreated"	:	true

}

AranagoDB uses append-only journals. Data corruption should only occur when the
database server is killed. In this case, the corruption should only occur in the last
object(s) that have being written to the journal.

If a corruption occurs within a normal datafile, then this can only happen if a hardware
fault occurred.

If a journal or datafile is corrupt, shut down the database server and start the program

unix>	arango-dfdb

in order to check the consistency of the datafiles and journals. This brings up

___						_									__	_	_											___		___				___	

			/			__	_|	|_	__	_	/	_(_)	|	___					/			\/	__\		/	_	\

		/	/\	/	_`	|	__/	_`	|	|_|	|	|/	_	\			/	/\	/__\//	/	/_\/

	/	/_//	(_|	|	||	(_|	|		_|	|	|		__/		/	/_//	\/		\/	/_\\	

/___,'	__,_|____,_|_|	|_|_|___|	/___,'_____/____/	

Available	collections:

		0:	_structures

		1:	_users

		2:	_routing

		3:	_modules

		4:	_graphs

		5:	products

		6:	prices

		*:	all

Collection	to	check:	

You can now select, which collection you want to check. After you selected one or all
collections, a consistency check is performed.

Checking	collection	#1:	_users

Database

Datafile Debugger

In Case Of Disaster

		path:	/usr/local/var/lib/arangodb

Collection

		name:	_users

		identifier:	82343

Datafiles

		#	of	journals:	1

		#	of	compactors:	1

		#	of	datafiles:	0

Datafile

		path:	/usr/local/var/lib/arangodb/collection-82343/journal-1065383.db

		type:	journal

		current	size:	33554432

		maximal	size:	33554432

		total	used:	256

		#	of	entries:	3

		status:	OK

If there is a problem with one of the datafile, then the database debugger tries to fixed
that problem.

WARNING:	The	journal	was	not	closed	properly,	the	last	entries	is	corrupted.

									This	might	happen	ArangoDB	was	killed	and	the	last	entries	were	not

									fully	written	to	disk.

Wipe	the	last	entries	(Y/N)?

If you answer Y, the corrupted entry will be removed.

If you see a corruption in a datafile (and not a journal), then something is terrible wrong.
These files are immutable and never changed by ArangoDB. A corruption in such a file is
an indication of a hard-disk failure.

The following naming conventions should be followed by users when creating databases,
collections and documents in ArangoDB.

Naming Conventions in ArangoDB

ArangoDB will always start up with a default database, named _system. Users can create
additional databases in ArangoDB, provided the database names conform to the
following constraints:

Database names must only consist of the letters a to z (both lower and upper case
allowed), the numbers 0 to 9, and the underscore (_) or dash (-) symbols This also
means that any non-ASCII database names are not allowed
Database names must always start with a letter. Database names starting with an
underscore are considered to be system databases, and users should not create or
delete those
The maximum allowed length of a database name is 64 bytes
Database names are case-sensitive

Database Names

Users can pick names for their collections as desired, provided the following naming
constraints are not violated:

Collection names must only consist of the letters a to z (both in lower and upper
case), the numbers 0 to 9, and the underscore (_) or dash (-) symbols. This also
means that any non-ASCII collection names are not allowed
User-defined collection names must always start with a letter. System collection
names must start with an underscore. All collection names starting with an
underscore are considered to be system collections that are for ArangoDB's internal
use only. System collection names should not be used by end users for their own
collections
The maximum allowed length of a collection name is 64 bytes
Collection names are case-sensitive

Collection Names

Users can define their own keys for documents they save. The document key will be
saved along with a document in the _key attribute. Users can pick key values as
required, provided that the values conform to the following restrictions:

The key must be at least 1 byte and at most 254 bytes long. Empty keys are
disallowed when specified (though it may be valid to completely omit the _key
attribute from a document)
It must consist of the letters a-z (lower or upper case), the digits 0-9, the underscore
(_), dash (-), or colon (:) characters only

Any other characters, especially multi-byte sequences, whitespace or
punctuation characters cannot be used inside key values

The key must be unique within the collection it is used

Keys are case-sensitive, i.e. myKey and MyKEY are considered to be different keys.

Specifying a document key is optional when creating new documents. If no document key
is specified by the user, ArangoDB will create the document key itself as each document
is required to have a key.

There are no guarantees about the format and pattern of auto-generated document keys
other than the above restrictions. Clients should therefore treat auto-generated document
keys as opaque values and not rely on their format.

Document Keys

Users can pick attribute names for document attributes as desired, provided the following
attribute naming constraints are not violated:

Attribute names starting with an underscore are considered to be system attributes
for ArangoDB's internal use. Such attribute names are used by ArangoDB for special
purposes, e.g. _id is used to contain a document's handle, _key is used to contain a
document's user-defined key, and _rev is used to contain the document's revision
number. In edge collections, the _from and _to attributes are used to reference other
documents.

More system attributes may be added in the future without further notice so end
users should try to avoid using their own attribute names starting with underscores.

Attribute names should not start with the at-mark (@). The at-mark at the start of
attribute names is reserved in ArangoDB for future use cases.

Theoretically, attribute names can include punctuation and special characters as
desired, provided the name is a valid UTF-8 string. For maximum portability, special
characters should be avoided though. For example, attribute names may contain the
dot symbol, but the dot has a special meaning in Javascript and also in AQL, so
when using such attribute names in one of these languages, the attribute name
would need to be quoted by the end user. This will work but requires more work so it
might be better to use attribute names which don't require any quoting/escaping in all
languages used. This includes languages used by the client (e.g. Ruby, PHP) if the
attributes are mapped to object members there.
ArangoDB does not enforce a length limit for attribute names. However, long
attribute names may use more memory in result sets etc. Therefore the use of long
attribute names is discouraged.
As ArangoDB saves document attribute names separate from the actual document
attribute value data, the combined length of all attribute names for a document must
fit into an ArangoDB shape structure. The maximum combined names length is
variable and depends on the number and data types of attributes used.
Attribute names are case-sensitive.
Attributes with empty names (the empty string) are removed from the document
when saving it.

When the document is later requested, it will be returned without these attributes.

Attribute Names

For example, if this document is saved

{	"a"	:	1,	""	:	2,	"b":	3	}

and later requested, it will be returned like this:

{	"a"	:	1,	"b":	3	}

0 - no error: No error has occurred.

1 - failed: Will be raised when a general error occurred.

2 - system error: Will be raised when operating system error occurred.

3 - out of memory: Will be raised when there is a memory shortage.

4 - internal error: Will be raised when an internal error occurred.

5 - illegal number: Will be raised when an illegal representation of a number was given.

6 - numeric overflow: Will be raised when a numeric overflow occurred.

7 - illegal option: Will be raised when an unknown option was supplied by the user.

8 - dead process identifier: Will be raised when a PID without a living process was
found.

9 - not implemented: Will be raised when hitting an unimplemented feature.

10 - bad parameter: Will be raised when the parameter does not fulfill the requirements.

11 - forbidden: Will be raised when you are missing permission for the operation.

12 - out of memory in mmap: Will be raised when there is a memory shortage.

13 - csv is corrupt: Will be raised when encountering a corrupt csv line.

14 - file not found: Will be raised when a file is not found.

15 - cannot write file: Will be raised when a file cannot be written.

16 - cannot overwrite file: Will be raised when an attempt is made to overwrite an
existing file.

Error codes and meanings

general error messages

17 - type error: Will be raised when a type error is unencountered.

18 - lock timeout: Will be raised when there's a timeout waiting for a lock.

19 - cannot create directory: Will be raised when an attempt to create a directory fails.

20 - cannot create temporary file: Will be raised when an attempt to create a temporary
file fails.

21 - canceled request: Will be raised when a request is canceled by the user.

22 - intentional debug error: Will be raised intentionally during debugging.

23 - internal error with attribute ID in shaper: Will be raised if an attribute ID is not
found in the shaper but should have been.

24 - internal error if a legend could not be created: Will be raised if the legend
generator was only given access to the shape and some sids are in the data object
(inhomogeneous lists).

25 - IP address is invalid: Will be raised when the structure of an IP address is invalid.

26 - internal error if a legend for a marker does not yet exist in the same WAL file:
Will be raised internally, then fixed internally, and never come out to the user.

27 - file exists: Will be raised when a file already exists.

400 - bad parameter: Will be raised when the HTTP request does not fulfill the
requirements.

401 - unauthorized: Will be raised when authorization is required but the user is not
authorized.

403 - forbidden: Will be raised when the operation is forbidden.

404 - not found: Will be raised when an URI is unknown.

405 - method not supported: Will be raised when an unsupported HTTP method is used
for an operation.

HTTP standard errors

412 - precondition failed: Will be raised when a precondition for an HTTP request is not
met.

500 - internal server error: Will be raised when an internal server is encountered.

600 - invalid JSON object: Will be raised when a string representation of a JSON object
is corrupt.

601 - superfluous URL suffices: Will be raised when the URL contains superfluous
suffices.

1000 - illegal state: Internal error that will be raised when the datafile is not in the
required state.

1001 - could not shape document: Internal error that will be raised when the shaper
encountered a problem.

1002 - datafile sealed: Internal error that will be raised when trying to write to a datafile.

1003 - unknown type: Internal error that will be raised when an unknown collection type
is encountered.

1004 - read only: Internal error that will be raised when trying to write to a read-only
datafile or collection.

1005 - duplicate identifier: Internal error that will be raised when a identifier duplicate is
detected.

1006 - datafile unreadable: Internal error that will be raised when a datafile is
unreadable.

1007 - datafile empty: Internal error that will be raised when a datafile is empty.

HTTP errors

ArangoDB internal storage errors

For errors that occur because of a
programming error.

1008 - logfile recovery error: Will be raised when an error occurred during WAL log file
recovery.

1100 - corrupted datafile: Will be raised when a corruption is detected in a datafile.

1101 - illegal parameter file: Will be raised if a parameter file is corrupted.

1102 - corrupted collection: Will be raised when a collection contains one or more
corrupted data files.

1103 - mmap failed: Will be raised when the system call mmap failed.

1104 - filesystem full: Will be raised when the filesystem is full.

1105 - no journal: Will be raised when a journal cannot be created.

1106 - cannot create/rename datafile because it already exists: Will be raised when
the datafile cannot be created or renamed because a file of the same name already
exists.

1107 - database directory is locked: Will be raised when the database directory is
locked by a different process.

1108 - cannot create/rename collection because directory already exists: Will be
raised when the collection cannot be created because a directory of the same name
already exists.

1109 - msync failed: Will be raised when the system call msync failed.

1110 - cannot lock database directory: Will be raised when the server cannot lock the
database directory on startup.

1111 - sync timeout: Will be raised when the server waited too long for a datafile to be
synced to disk.

ArangoDB storage errors

For errors that occur because of an outside
event.

1200 - conflict: Will be raised when updating or deleting a document and a conflict has
been detected.

1201 - invalid database directory: Will be raised when a non-existing database
directory was specified when starting the database.

1202 - document not found: Will be raised when a document with a given identifier or
handle is unknown.

1203 - collection not found: Will be raised when a collection with a given identifier or
name is unknown.

1204 - parameter 'collection' not found: Will be raised when the collection parameter is
missing.

1205 - illegal document handle: Will be raised when a document handle is corrupt.

1206 - maximal size of journal too small: Will be raised when the maximal size of the
journal is too small.

1207 - duplicate name: Will be raised when a name duplicate is detected.

1208 - illegal name: Will be raised when an illegal name is detected.

1209 - no suitable index known: Will be raised when no suitable index for the query is
known.

1210 - unique constraint violated: Will be raised when there is a unique constraint
violation.

1211 - geo index violated: Will be raised when an illegal coordinate is used.

1212 - index not found: Will be raised when an index with a given identifier is unknown.

1213 - cross collection request not allowed: Will be raised when a cross-collection is

ArangoDB storage errors

For errors that occur when fulfilling a user
request.

requested.

1214 - illegal index handle: Will be raised when a index handle is corrupt.

1215 - cap constraint already defined: Will be raised when a cap constraint was
already defined.

1216 - document too large: Will be raised when the document cannot fit into any datafile
because of it is too large.

1217 - collection must be unloaded: Will be raised when a collection should be
unloaded, but has a different status.

1218 - collection type invalid: Will be raised when an invalid collection type is used in a
request.

1219 - validator failed: Will be raised when the validation of an attribute of a structure
failed.

1220 - parser failed: Will be raised when the parsing of an attribute of a structure failed.

1221 - illegal document key: Will be raised when a document key is corrupt.

1222 - unexpected document key: Will be raised when a user-defined document key is
supplied for collections with auto key generation.

1224 - server database directory not writable: Will be raised when the server's
database directory is not writable for the current user.

1225 - out of keys: Will be raised when a key generator runs out of keys.

1226 - missing document key: Will be raised when a document key is missing.

1227 - invalid document type: Will be raised when there is an attempt to create a
document with an invalid type.

1228 - database not found: Will be raised when a non-existing database is accessed.

1229 - database name invalid: Will be raised when an invalid database name is used.

1230 - operation only allowed in system database: Will be raised when an operation is
requested in a database other than the system database.

1231 - endpoint not found: Will be raised when there is an attempt to delete a non-
existing endpoint.

1232 - invalid key generator: Will be raised when an invalid key generator description is
used.

1233 - edge attribute missing: will be raised when the _from or _to values of an edge
are undefined or contain an invalid value.

1234 - index insertion warning - attribute missing in document: Will be raised when
an attempt to insert a document into an index is caused by in the document not having
one or more attributes which the index is built on.

1235 - index creation failed: Will be raised when an attempt to create an index has
failed.

1236 - write-throttling timeout: Will be raised when the server is write-throttled and a
write operation has waited too long for the server to process queued operations.

1300 - datafile full: Will be raised when the datafile reaches its limit.

1301 - server database directory is empty: Will be raised when encountering an empty
server database directory.

1400 - no response: Will be raised when the replication applier does not receive any or
an incomplete response from the master.

1401 - invalid response: Will be raised when the replication applier receives an invalid
response from the master.

1402 - master error: Will be raised when the replication applier receives a server error
from the master.

ArangoDB storage errors

For errors that occur but are anticipated.

ArangoDB replication errors

1403 - master incompatible: Will be raised when the replication applier connects to a
master that has an incompatible version.

1404 - master change: Will be raised when the replication applier connects to a different
master than before.

1405 - loop detected: Will be raised when the replication applier is asked to connect to
itself for replication.

1406 - unexpected marker: Will be raised when an unexpected marker is found in the
replication log stream.

1407 - invalid applier state: Will be raised when an invalid replication applier state file is
found.

1408 - invalid transaction: Will be raised when an unexpected transaction id is found.

1409 - invalid replication logger configuration: Will be raised when the configuration
for the replication logger is invalid.

1410 - invalid replication applier configuration: Will be raised when the configuration
for the replication applier is invalid.

1411 - cannot change applier configuration while running: Will be raised when there
is an attempt to change the configuration for the replication applier while it is running.

1412 - replication stopped: Special error code used to indicate the replication applier
was stopped by a user.

1413 - no start tick: Will be raised when the replication error is started without a known
start tick value.

1450 - could not connect to agency: Will be raised when none of the agency servers
can be connected to.

1451 - missing coordinator header: Will be raised when a DB server in a cluster
receives a HTTP request without a coordinator header.

1452 - could not lock plan in agency: Will be raised when a coordinator in a cluster

ArangoDB cluster errors

cannot lock the Plan hierarchy in the agency.

1453 - collection ID already exists: Will be raised when a coordinator in a cluster tries
to create a collection and the collection ID already exists.

1454 - could not create collection in plan: Will be raised when a coordinator in a
cluster cannot create an entry for a new collection in the Plan hierarchy in the agency.

1455 - could not read version in current in agency: Will be raised when a coordinator
in a cluster cannot read the Version entry in the Current hierarchy in the agency.

1456 - could not create collection: Will be raised when a coordinator in a cluster
notices that some DBServers report problems when creating shards for a new collection.

1457 - timeout in cluster operation: Will be raised when a coordinator in a cluster runs
into a timeout for some cluster wide operation.

1458 - could not remove collection from plan: Will be raised when a coordinator in a
cluster cannot remove an entry for a collection in the Plan hierarchy in the agency.

1459 - could not remove collection from current: Will be raised when a coordinator in
a cluster cannot remove an entry for a collection in the Current hierarchy in the agency.

1460 - could not create database in plan: Will be raised when a coordinator in a cluster
cannot create an entry for a new database in the Plan hierarchy in the agency.

1461 - could not create database: Will be raised when a coordinator in a cluster notices
that some DBServers report problems when creating databases for a new cluster wide
database.

1462 - could not remove database from plan: Will be raised when a coordinator in a
cluster cannot remove an entry for a database in the Plan hierarchy in the agency.

1463 - could not remove database from current: Will be raised when a coordinator in a
cluster cannot remove an entry for a database in the Current hierarchy in the agency.

1464 - no responsible shard found: Will be raised when a coordinator in a cluster
cannot determine the shard that is responsible for a given document.

1465 - cluster internal HTTP connection broken: Will be raised when a coordinator in
a cluster loses an HTTP connection to a DBserver in the cluster whilst transferring data.

1466 - must not specify _key for this collection: Will be raised when a coordinator in a
cluster finds that the _key attribute was specified in a sharded collection the uses not only
_key as sharding attribute.

1467 - got contradicting answers from different shards: Will be raised if a coordinator
in a cluster gets conflicting results from different shards, which should never happen.

1468 - not all sharding attributes given: Will be raised if a coordinator tries to find out
which shard is responsible for a partial document, but cannot do this because not all
sharding attributes are specified.

1469 - must not change the value of a shard key attribute: Will be raised if there is an
attempt to update the value of a shard attribute.

1470 - unsupported operation or parameter: Will be raised when there is an attempt to
carry out an operation that is not supported in the context of a sharded collection.

1471 - this operation is only valid on a coordinator in a cluster: Will be raised if there
is an attempt to run a coordinator-only operation on a different type of node.

1472 - error reading Plan in agency: Will be raised if a coordinator or DBserver cannot
read the Plan in the agency.

1473 - could not truncate collection: Will be raised if a coordinator cannot truncate all
shards of a cluster collection.

1474 - error in cluster internal communication for AQL: Will be raised if the internal
communication of the cluster for AQL produces an error.

1500 - query killed: Will be raised when a running query is killed by an explicit admin
command.

1501 - %s: Will be raised when query is parsed and is found to be syntactically invalid.

1502 - query is empty: Will be raised when an empty query is specified.

1503 - runtime error '%s': Will be raised when a runtime error is caused by the query.

1504 - number out of range: Will be raised when a number is outside the expected

ArangoDB query errors

range.

1510 - variable name '%s' has an invalid format: Will be raised when an invalid
variable name is used.

1511 - variable '%s' is assigned multiple times: Will be raised when a variable gets re-
assigned in a query.

1512 - unknown variable '%s': Will be raised when an unknown variable is used or the
variable is undefined the context it is used.

1521 - unable to read-lock collection %s: Will be raised when a read lock on the
collection cannot be acquired.

1522 - too many collections: Will be raised when the number of collections in a query is
beyond the allowed value.

1530 - document attribute '%s' is assigned multiple times: Will be raised when a
document attribute is re-assigned.

1540 - usage of unknown function '%s()': Will be raised when an undefined function is
called.

1541 - invalid number of arguments for function '%s()', expected number of
arguments: minimum: %d, maximum: %d: Will be raised when the number of
arguments used in a function call does not match the expected number of arguments for
the function.

1542 - invalid argument type in call to function '%s()': Will be raised when the type of
an argument used in a function call does not match the expected argument type.

1543 - invalid regex value: Will be raised when an invalid regex argument value is used
in a call to a function that expects a regex.

1550 - invalid structure of bind parameters: Will be raised when the structure of bind
parameters passed has an unexpected format.

1551 - no value specified for declared bind parameter '%s': Will be raised when a
bind parameter was declared in the query but the query is being executed with no value
for that parameter.

1552 - bind parameter '%s' was not declared in the query: Will be raised when a value

gets specified for an undeclared bind parameter.

1553 - bind parameter '%s' has an invalid value or type: Will be raised when a bind
parameter has an invalid value or type.

1560 - invalid logical value: Will be raised when a non-boolean value is used in a logical
operation.

1561 - invalid arithmetic value: Will be raised when a non-numeric value is used in an
arithmetic operation.

1562 - division by zero: Will be raised when there is an attempt to divide by zero.

1563 - list expected: Will be raised when a non-list operand is used for an operation that
expects a list argument operand.

1569 - FAIL(%s) called: Will be raised when the function FAIL() is called from inside a
query.

1570 - no suitable geo index found for geo restriction on '%s': Will be raised when a
geo restriction was specified but no suitable geo index is found to resolve it.

1571 - no suitable fulltext index found for fulltext query on '%s': Will be raised when
a fulltext query is performed on a collection without a suitable fulltext index.

1572 - invalid date value: Will be raised when a value cannot be converted to a date.

ERROR_QUERY_MULTI_MODIFY,1573,"multi-modify query", "Will be raised when an
AQL query contains more than one data-modifying operation."

ERROR_QUERY_MODIFY_IN_SUBQUERY,1574,"modify operation in subquery", "Will
be raised when an AQL query contains a data-modifying operation inside a subquery."

ERROR_QUERY_COMPILE_TIME_OPTIONS,1575,"query options must be readable at
query compile time", "Will be raised when an AQL data-modification query contains
options that cannot be figured out at query compile time."

ERROR_QUERY_EXCEPTION_OPTIONS,1576,"query options expected", "Will be
raised when an AQL data-modification query contains an invalid options specification."

ERROR_QUERY_BAD_JSON_PLAN,1577,"JSON describing execution plan was bad",
"Will be raised when an HTTP API for a query got an invalid JSON object."

ERROR_QUERY_NOT_FOUND,1578,"query ID not found", "Will be raised when an Id of
a query is not found by the HTTP API."

ERROR_QUERY_IN_USE,1579,"query with this ID is in use", "Will be raised when an Id
of a query is found by the HTTP API but the query is in use."

1580 - invalid user function name: Will be raised when a user function with an invalid
name is registered.

1581 - invalid user function code: Will be raised when a user function is registered with
invalid code.

1582 - user function '%s()' not found: Will be raised when a user function is accessed
but not found.

1583 - user function runtime error: %s: Will be raised when a user function throws a
runtime exception.

1600 - cursor not found: Will be raised when a cursor is requested via its id but a cursor
with that id cannot be found.

1650 - internal transaction error: Will be raised when a wrong usage of transactions is
detected. this is an internal error and indicates a bug in ArangoDB.

1651 - nested transactions detected: Will be raised when transactions are nested.

1652 - unregistered collection used in transaction: Will be raised when a collection is
used in the middle of a transaction but was not registered at transaction start.

1653 - disallowed operation inside transaction: Will be raised when a disallowed
operation is carried out in a transaction.

1654 - transaction aborted: Will be raised when a transaction was aborted.

AQL user functions

ArangoDB cursor errors

ArangoDB transaction errors

1700 - invalid user name: Will be raised when an invalid user name is used.

1701 - invalid password: Will be raised when an invalid password is used.

1702 - duplicate user: Will be raised when a user name already exists.

1703 - user not found: Will be raised when a user name is updated that does not exist.

1704 - user must change his password: Will be raised when the user must change his
password.

1750 - invalid application name: Will be raised when an invalid application name is
specified.

1751 - invalid mount: Will be raised when an invalid mount is specified.

1752 - application download failed: Will be raised when an application download from
the central repository failed.

1753 - application upload failed: Will be raised when an application upload from the
client to the ArangoDB server failed.

1800 - invalid key declaration: Will be raised when an invalid key specification is
passed to the server

1801 - key already exists: Will be raised when a key is to be created that already exists

1802 - key not found: Will be raised when the specified key is not found

1803 - key is not unique: Will be raised when the specified key is not unique

1804 - key value not changed: Will be raised when updating the value for a key does
not work

User management

Application management

Key value access

1805 - key value not removed: Will be raised when deleting a key/value pair does not
work

1806 - missing value: Will be raised when the value is missing

1850 - invalid task id: Will be raised when a task is created with an invalid id.

1851 - duplicate task id: Will be raised when a task id is created with a duplicate id.

1852 - task not found: Will be raised when a task with the specified id could not be
found.

1901 - invalid graph: Will be raised when an invalid name is passed to the server.

1902 - could not create graph: Will be raised when an invalid name, vertices or edges is
passed to the server.

1903 - invalid vertex: Will be raised when an invalid vertex id is passed to the server.

1904 - could not create vertex: Will be raised when the vertex could not be created.

1905 - could not change vertex: Will be raised when the vertex could not be changed.

1906 - invalid edge: Will be raised when an invalid edge id is passed to the server.

1907 - could not create edge: Will be raised when the edge could not be created.

1908 - could not change edge: Will be raised when the edge could not be changed.

1909 - too many iterations: Will be raised when too many iterations are done in a graph
traversal.

1910 - invalid filter result: Will be raised when an invalid filter result is returned in a
graph traversal.

1920 - multi use of edge collection in edge def: an edge collection may only be used
once in one edge definition of a graph.,

Task errors

Graph / traversal errors

1921 - edge collection already used in edge def: is already used by another graph in a
different edge definition.,

1922 - missing graph name: a graph name is required to create a graph.,

1923 - malformed edge def: the edge definition is malformed. It has to be an array of
objects.,

1924 - graph not found: a graph with this name could not be found.,

1925 - graph already exists: a graph with this name already exists.,

1926 - collection does not exist: does not exist.,

1927 - not a vertex collection: the collection is not a vertex collection.,

1928 - not in orphan collection: Vertex collection not in orphan collection of the graph.,

1929 - collection used in edge def: The collection is already used in an edge definition
of the graph.,

1930 - edge collection not used in graph: The edge collection is not used in any edge
definition of the graph.,

1931 - is not an ArangoCollection: The collection is not an ArangoCollection.,

1932 - collection _graphs does not exist: collection _graphs does not exist.,

1933 - Invalid example type. Has to be String, Array or Object: Invalid example type.
Has to be String, Array or Object.,

1934 - Invalid example type. Has to be Array or Object: Invalid example type. Has to
be Array or Object.,

1935 - Invalid number of arguments. Expected: : Invalid number of arguments.
Expected: ,

1936 - Invalid parameter type.: Invalid parameter type.,

1937 - Invalid id: Invalid id,

1938 - collection used in orphans: The collection is already used in the orphans of the
graph.,

1950 - unknown session: Will be raised when an invalid/unknown session id is passed
to the server.

1951 - session expired: Will be raised when a session is expired.

2000 - unknown client error: This error should not happen.

2001 - could not connect to server: Will be raised when the client could not connect to
the server.

2002 - could not write to server: Will be raised when the client could not write data.

2003 - could not read from server: Will be raised when the client could not read data.

10000 - element not inserted into structure, because key already exists: Will be
returned if the element was not insert because the key already exists.

10001 - element not inserted into structure, because it already exists: Will be
returned if the element was not insert because it already exists.

10002 - key not found in structure: Will be returned if the key was not found in the
structure.

10003 - element not found in structure: Will be returned if the element was not found in
the structure.

20000 - newest version of app already installed: newest version of app already
installed

Session errors

Simple Client

results, which are not errors

foxx app update via github

dispatcher errors

ERROR_QUEUE_ALREADY_EXISTS,21000,"named queue already exists", "Will be
returned if a queue with this name already exists."

21001 - dispatcher stopped: Will be returned if a shutdown is in progress.

21002 - named queue does not exist: Will be returned if a queue with this name does
not exist.

21003 - named queue is full: Will be returned if a queue with this name is full.

	Introduction
	Installing
	Linux
	Mac OS X
	Windows
	Compiling
	Upgrading in general
	Upgrading to new version
	Set up Cluster

	First Steps
	Getting Familiar
	The ArangoDB Server
	The ArangoDB Shell
	Shell Output
	Configuration
	Details

	Collections

	ArangoDB Web Interface
	Handling Databases
	Working with Databases
	Notes about Databases

	Handling Collections
	Collection Methods
	Database Methods

	Handling Documents
	Address and ETag
	Collection Methods
	Database Methods

	Handling Edges
	Simple Queries
	Geo Queries
	Fulltext Queries
	Pagination
	Sequential Access
	Modification Queries

	Transactions
	Transaction invocation
	Passing parameters
	Locking and isolation
	Durability
	Limitations

	Write-ahead log
	AQL
	How to invoke AQL
	Data modification queries
	Language Basics
	Functions
	Query Results
	Operators
	High level Operations
	Graph Operations
	Advanced Features
	Extending AQL
	Conventions
	Registering Functions

	AQL Examples
	Collection based queries
	Data-modification queries
	Projections and filters
	Joins
	Grouping

	General Graphs
	Graph Management
	Graph Functions
	Fluent Query Interface

	(Deprecated) Blueprint Graphs
	Graph Constructor
	Vertex Methods
	Edge Methods

	Traversals
	Using Traversal Objects
	Example Data

	Foxx
	Handling Request
	Manifest
	FoxxController
	FoxxModel
	FoxxRepository
	Deploying Applications
	Developing Applications
	Dependency Injection
	Foxx Exports
	Optional Functionality

	Foxx Manager
	First Steps
	Behind the scenes
	Multiple Databases
	Manager Commands
	Frequently Used Options

	ArangoDB's Actions
	Delivering HTML Pages
	Json Objects
	Modifying

	Replication
	Components
	Example Setup
	Replication Limitations
	Replication Overhead

	Sharding
	How to try it out
	Implementation
	Authentication
	Firewall setup

	Configure ArangoDB
	Arangod options
	Write-ahead log options
	Endpoints options
	Cluster options
	Logging options
	Communication options
	Random numbers
	Authentication
	Emergency Console

	Arangoimp
	Arangodump
	Arangorestore
	HTTP API
	Databases
	To-Endpoint
	Management
	Notes on Databases

	Documents
	Address and ETag
	Working with

	Edges
	Address and ETag
	Working with Edges

	AQL Query Cursors
	Query Results
	Accessing Cursors

	AQL Queries
	AQL User Functions Management
	Simple Queries
	Collections
	Creating
	Getting Information
	Modifying

	Indexes
	Working with Indexes
	Cap Constraints
	Hash
	Skiplist
	Geo
	Fulltext

	Transactions
	General Graph
	Management
	Vertices
	Edges

	(Deprecated) Graphs
	Vertex
	Edges

	Traversals
	Replication
	Replication Dump
	Replication Logger
	Replication Applier
	Other Replication Commands

	Bulk Imports
	JSON Documents
	Headers and Values

	Batch Requests
	Monitoring
	User Management
	Async Result
	Endpoints
	Sharding
	Miscellaneous functions
	General Handling

	Javascript Modules
	"console"
	"fs"
	(Deprecated) "graph"
	Graph Constructors
	Vertex Methods
	Edge Methods

	"actions"
	"planner"
	Write-ahead log
	Task Management
	Using jsUnity

	Administrating ArangoDB
	Handling Indexes
	Cap Constraint
	Geo Indexes
	Fulltext Indexes
	Hash Indexes
	Skip-Lists
	BitArray Indexes

	Datafile Debugger
	Naming Conventions
	Database Names
	Collection Names
	Document Keys
	Attribute Names

	Error codes and meanings

